Skip to main content
Log in

Synthesis and gelation capability of Fmoc and Boc mono-substituted cyclo(L-Lys-L-Lys)s

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Fmoc or Boc mono-substituted cyclo(L-Lys-L-Lys)s were synthesized via the reaction of lysine cyclic dipeptide with Fmoc N-hydroxysuccinimide este(Fmoc-OSu) and di-tert-butyl dicarbonate[(Boc)2O], respectively. The resulted mono-substituted cyclo(L-Lys-L-Lys)s(24) by means of test tube inversion method served as organogelators enabled to form stable thermo-reversible organogels in alcoholic, substituted benzene and chlorinated solvents, with the minimum gelation concentration(MGC) in a range of 1%―4%(mass fraction). The transmission electron microscopy(TEM) and scanning electron microscopy(SEM) observations reveal that these gelators self-assembled into 3D nanofiber, nanoribbon or nanotube network structures. The rheological measurement exhibited that the storage modulus of gels is higher than the loss one, and the complex viscosity is reduced linearly with the increasing of scanning frequency. The fluorescence spectrum of compound 2 in 1,2-dichloroethane and benzene demonstrates that the emission peak of Fmoc at 320 nm has red-shifted and the intensity decreases gradually, while the intensity of the emission peak at 460 nm substantially enhances as a function of concentration, indicating the existence of π-π stacking interactions and the formation of J-type aggregates. Meanwhile, compound 4 self-assembled into nanotubes via the stacking of multiple bilayer membranes. Fmoc and Boc disubstituted cyclo(L-Lys-L-Lys)(3) holds the relatively lower MGC values, showing the stronger gelation ability in most selected organic solvents due to the presence of both Fmoc and Boc groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Steed J. W., Chem. Commun., 2011, 47, 1379

    Article  CAS  Google Scholar 

  2. Suzaki Y., Taira T., Osakada K., J. Mater. Chem., 2011, 21, 930

    Article  CAS  Google Scholar 

  3. Hanabusa K., Suzuki M., Polym. J., 2014, 46, 776

    Article  CAS  Google Scholar 

  4. Yang Z., Gu H., Zhang Y., Wang L., Xu B., Chem. Commun., 2004, 208

    Google Scholar 

  5. Zhang Y., Gu H., Yang Z., Xu B., J. Am. Chem. Soc., 2003, 125, 13680

    Article  CAS  Google Scholar 

  6. Borthwick A. D., Chem. Rev., 2012, 112, 3641

    Article  CAS  Google Scholar 

  7. Marchini M., Mingozzi M., Gennari C., Chem. Eur. J., 2012, 18, 6195

    Article  CAS  Google Scholar 

  8. Dufour E., Garcia J., Org. Biomol. Chem., 2014, 12, 4964

    Article  CAS  Google Scholar 

  9. Ou C. W., Wang H. M., Chen M. S., Chin. J. Chem., 2012, 30, 1781

    Article  CAS  Google Scholar 

  10. Sasaki Y., Akustu Y., Suzuki K., Kisara K., Chem. Pharm. Bull., 1982, 30, 4435

    Article  CAS  Google Scholar 

  11. Xie Z. G., Zhang A. Y., Ye L., Wang X., Feng Z. G., Soft Matter, 2009, 5, 1474

    Article  CAS  Google Scholar 

  12. Hanabusa K., Fukui H., Suzuki M., Shirai H., Langmuir, 2005, 21, 10383

    Article  CAS  Google Scholar 

  13. Hoshizawa H., Minemura Y., Yoshikawa K., Suzuki M., Hanabusa K., Langmuir, 2013, 29, 14666

    Article  CAS  Google Scholar 

  14. Xie Z. G., Zhang A. Y., Ye L., Wang X., Feng Z. G., J. Mater. Chem., 2009, 19, 6100

    Article  CAS  Google Scholar 

  15. Zong Q. Y., Geng H. M., Wang L., Ye L., Zhang A. Y., Feng Z. G., Acta Chim. Sinica, 2015, 73, 423

    Article  CAS  Google Scholar 

  16. Geng H. M., Zong Q. Y., Ye L., Zhang A. Y., Feng Z. G., Chin. J. Appl. Chem., 2015, 32, 900

    CAS  Google Scholar 

  17. Geng H. M., Zong Q. Y., You J., Ye L., Zhang A. Y., Shao Z. Q., Feng Z. G., Sci. China Chem., 2015, 59, 293

    Article  Google Scholar 

  18. Huang Z., Kang S. K., Banno M., Yamaguchi T., Lee D., Seok C., Yashima E., Science, 2012, 337, 1521

    Article  CAS  Google Scholar 

  19. Eisele D. M., Cone C. W., Bloemsma E. A., Vlaming S. M., Rabe J. P., Vanden B. D., A. Nat. Chem., 2012, 4, 655

    Article  CAS  Google Scholar 

  20. Zhang W., Jin W. S., Fukushima T., Saeki A., Seki S., Aida T., Science, 2011, 334, 340

    Article  CAS  Google Scholar 

  21. Xie Z. G., Zhang A. Y., Ye L., Feng Z. G., Acta Chim. Sinica, 2008, 66, 2620

    CAS  Google Scholar 

  22. Maria A. M., Jordi J. B., Macromol. Chem. Phys., 2006, 207, 615

    Article  Google Scholar 

  23. Kaur N., Zhou B., Breitbeil F., Hardy K., Trantcheva I., Mol. Pharm., 2008, 2, 294

    Article  Google Scholar 

  24. Raeburn J., Cristina M. C., Adams D. J., Soft Matter, 2015, 11, 927

    Article  CAS  Google Scholar 

  25. Lange S. C., Unsleber J., Wallera P. M., Ravoo B. J., Org. Biomol. Chem., 2015, 13 561

    Article  CAS  Google Scholar 

  26. Huang R. L., Qi W., Feng L. B., Su R. X., He Z. M., Soft Matter, 2011, 7, 6222

    Article  CAS  Google Scholar 

  27. Fichman G., Manohar S., Guterman T., Seliktar D., Messersmith P. B., Gazit E., NANO, 2014, 8, 7220

    CAS  Google Scholar 

  28. Zhang F. J., Xu Z. H., Dong S. L., Feng L., Song A. X., Soft Matter, 2014, 10, 4855

    Article  Google Scholar 

  29. Qin S. Y., Wang Q. R., Peng M. Y., Zhang X. Z., Chin. J. Chem., 2014, 32, 22

    Article  CAS  Google Scholar 

  30. Skilling K. J., Citossi F., Bradshaw T. D., Ashford M., Kellam B., Marlow M., Soft Matter, 2014, 10, 237

    Article  CAS  Google Scholar 

  31. Yang Z. M., Xu B., J. Mater. Chem., 2007, 17, 2385

    Article  CAS  Google Scholar 

  32. Solsona M. T., Miravet J. F., Chem. Eur. J., 2014, 20, 1023

    Article  Google Scholar 

  33. Li J. L., Liu X. Y., Adv. Funct. Mater., 2010, 20, 3196

    Article  CAS  Google Scholar 

  34. Shimizu T., Minamikawa H., Masuda M., Polym. J., 2014, 46, 831

    Article  CAS  Google Scholar 

  35. Smith A. M., Williams R. J., Uljin R. V., Adv. Mater., 2008, 20, 37

    Article  CAS  Google Scholar 

  36. Manchineella S., Govindaraju T., RSC Adv., 2012, 2, 5539

    Article  CAS  Google Scholar 

  37. Kameta N., Minamikawa H., Masuda M., Soft Matter, 2011, 7, 4539

    Article  CAS  Google Scholar 

  38. Masuda M., Shimizu T., Langmuir, 2004, 20, 5969

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengguo Feng.

Additional information

Supported by the National Natural Science Foundation of China(No.21174018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, Q., Geng, H., Ye, L. et al. Synthesis and gelation capability of Fmoc and Boc mono-substituted cyclo(L-Lys-L-Lys)s. Chem. Res. Chin. Univ. 32, 484–492 (2016). https://doi.org/10.1007/s40242-016-5471-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-5471-5

Keywords

Navigation