Skip to main content
Log in

Weighted Least Squares and Least Median Squares estimation for the fuzzy linear regression analysis

  • Published:
METRON Aims and scope Submit manuscript

Abstract

In this paper, we discuss the problem of regression analysis in a fuzzy domain. By considering an iterative Weighted Least Squares estimation approach, we propose a general linear regression model for studying the dependence of a general class of fuzzy response variable, i.e., \(LR_2\) fuzzy variable or trapezoidal fuzzy variable,on a set of crisp or \(LR_2\) fuzzy explanatory variables. We also show some theoretical properties and a suitable generalization of the determination coefficient in order to investigate the goodness of fit of the regression model. Furthermore, we discuss some theoretical issues and an assessment of imprecision of the regression function. Finally, we suggest a robust version of the fuzzy regression model based on the Least Median Squares estimation approach which is able to neutralize and/or smooth the disruptive effects of possible crisp or fuzzy outliers in the estimation process. A simulation study and two empirical applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. \(\mathbf {M}_1,\,\mathbf {M}_2,\,\mathbf {L},\,\text { and } \mathbf {R}\) also contain a vector of ones, related to the intercepts of the model.

References

  1. Anand Raj, P., Nagesh Kumar, D.: Ranking alternatives with fuzzy weights using maximizing set and minimizing set. Fuzzy Sets Syst. 105(3), 365–375 (1999)

    Article  MATH  Google Scholar 

  2. Blanco-Fernández, A., Colubi, A., García-Bárzana, M.: A set arithmetic-based linear regression model for modelling interval-valued responses through real-valued variables. Inf. Sci. 247(20), 109–122 (2013)

    Article  Google Scholar 

  3. Blanco-Fernández, A., Casals, M.R., Colubi, A., Corral, N., García-Bárzana, M., Gil, M.A., González-Rodríguez, G., López, M.T., Lubiano, M.A., Montenegro, M., Ramos-Guajardo, A.B., de la Rosa de Sáa, S., Sinova, B.: A distance-based statistical analysis of fuzzy number-valued data. Int. J. Approx. Reason. doi:10.1016/j.ijar.2013.09.020 (2014)

  4. Celmiņš, A.: Least squares model fitting to fuzzy vector data. Fuzzy Sets Syst. 22(3), 245–269 (1987)

    Article  Google Scholar 

  5. Chang, O.Y.H., Ayyub, M.B.: Fuzzy regression methods—a comparative assessment. Fuzzy Sets Syst. 119(2), 187–203 (2001)

    Article  MathSciNet  Google Scholar 

  6. Chang, P.T., Stanley Lee, E.: A generalized fuzzy weighted least-squares regression. Fuzzy Sets Syst. 82(3), 289–298 (1996)

    Article  MATH  Google Scholar 

  7. Colubi, A., Coppi, R., D’Urso, P., Gil, M.A.: Statistics with fuzzy random variable. Metron LXV(3), 277–303 (2007)

    Google Scholar 

  8. Coppi, R., D’Urso, P.: Fuzzy k-mean clustering models for triangular fuzzy time trajectories. Stat. Methods Appl. 11, 21–24 (2002)

    Article  MATH  Google Scholar 

  9. Coppi, R., D’Urso, P.: Regression analysis with fuzzy informational paradigm: a least-squares approach using membership function information. Int. J. Pure Appl. Math. 8, 279–306 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Coppi, R., D’Urso, P., Giordani, P., Santoro, A.: Least squares estimation of a linear regression model with LR fuzzy response. Comput. Stat. Data Anal. 51(1), 267–286 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diamond, P.: Fuzzy least squares. Inf. Sci. 46(3), 141–157 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diamond, P., Tanaka, H.: Fuzzy regression analysis. In: Slowinski, R. (ed.) Fuzzy Sets in Decision Analysis, Operations Research and Statistics, pp. 349–387. Kluwer Academic Publishers, Massachusetts (1998)

    Chapter  Google Scholar 

  13. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  14. D’Urso, P.: Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data. Comput. Stat. Data Anal. 42(1), 47–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. D’Urso, P., Gastaldi, T.: A least-squares approach to fuzzy linear regression analysis. Comput. Stat. Data Anal. 34(4), 427–440 (2000)

    Article  MATH  Google Scholar 

  16. D’Urso, P., Giordani, P.: Fitting of fuzzy linear regression models with multivariate response. Int. Math. J. 3(6), 655–664 (2003)

    MathSciNet  MATH  Google Scholar 

  17. D’Urso, P., Santoro, A.: Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable. Comput. Stat. Data Anal. 51(1), 287–313 (2006)

    Google Scholar 

  18. D’Urso, P., Santoro, A.: Goodness of fit and variable selection in the fuzzy multiple linear regression. Fuzzy Sets Syst. 157, 2627–2647 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. D’Urso, P., Massari, R., Santoro, A.: A class of fuzzy clusterwise regression models. Inf. Sci. 180(24), 4737–4762 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. D’Urso, P., Massari, R., Santoro, A.: Robust fuzzy regression analysis. Inf. Sci. 181(19), 4154–4174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ferraro, M.B., Coppi, R., González Rodríguez, G., Colubi, A.: A linear regression model for imprecise response. Int. J. Approx. Reason. 51(7), 759–770 (2010)

    Article  MATH  Google Scholar 

  22. González-Rodríguez, G., Blanco, Á., Corral, N., Colubi, A.: Least squares estimation of linear regression models for convex compact random sets. Adv. Data Anal. Classif. 1(1), 67–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. González-Rodríguez, G., Blanco, Á., Colubi, A., Lubiano, M.A.: Estimation of a simple linear regression model for fuzzy random variables. Fuzzy Sets Syst. 160(3), 357–370 (2009)

    Article  MATH  Google Scholar 

  24. Kim, K.J., Moskowitz, H., Koksalan, M.: Fuzzy versus statistical linear regression. Eur. J. Oper. Res. 92(2), 417–434 (1996)

    Article  MATH  Google Scholar 

  25. Körner, R., Näther, W.: Linear regression with random fuzzy variables: extended classical estimates, best linear estimates, least squares estimates. Inf. Sci. 109(1–4), 95–118 (1998)

    Article  MATH  Google Scholar 

  26. Krätschmer, V.: Least squares estimation in linear regression models with vague concepts. In: Lopez-Diaz, M., Gil, M., Grzegorzewski, P., Hryniewicz, P., Lawry, J. (eds.) Soft Methodology and Random Information Systems, pp. 407–414. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Lawson, C.L., Hanson, R.J.: Solving least squares problems. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  28. Ma, M., Friedman, M., Kandel, A.: General fuzzy least squares. Fuzzy Sets Syst. 88(1), 107–118 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Näther, W.: On random fuzzy variables of second order and their application to linear statistical inference with fuzzy data. Metrika 51(3), 201–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rousseeuw, P.J.: Least median of squares regression. J. Am. Stat. Assoc. 79(388), 871–880 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rousseeuw, P.J., Leroy, A.M.: Robust regression and outlier detection, vol. 589. Wiley, New York (2005)

    Google Scholar 

  32. Sinova, B., Colubi, A., Gil, M., et al.: Interval arithmetic-based simple linear regression between interval data: discussion and sensitivity analysis on the choice of the metric. Inf. Sci. 199, 109–124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tanaka, H., Watada, J.: Possibilistic linear systems and their application to the linear regression model. Fuzzy Sets Syst. 27(3), 275–289 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tanaka, H., Uejima, S., Asai, K.: Linear regression analysis with fuzzy model. IEEE Trans. Syst. Man Cybern. 12(6), 903–907 (1982)

    Article  MATH  Google Scholar 

  35. Wu, H.C.: Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data. Comput. Stat. Data Anal. 42(1), 203–217 (2003)

    Article  MATH  Google Scholar 

  36. Wünsche, A., Naether, W.: Least-squares fuzzy regression with fuzzy random variables. Fuzzy Sets Syst. 130(1), 43–50 (2002)

    Article  MATH  Google Scholar 

  37. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Kluver Academic Press, Norwell (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo D’Urso.

Appendix: Iterative solutions of the \(LR_2\) output–\(LR_2\) inputs regression model

Appendix: Iterative solutions of the \(LR_2\) output–\(LR_2\) inputs regression model

By substituting in (7) the expressions (5a)–(5d), and by putting the first partial derivatives with respect to each coefficient equal to zero, the following iterative solutions are obtained.

$$\begin{aligned} {\varvec{\alpha }}_1&= (2-2\lambda \gamma _1+\lambda ^2\gamma _1^2+\rho ^2 \delta _1^2)^{-1}({\mathbf {M}}^{\prime }_1\mathbf {WM}_1)^{-1}{\mathbf {M}}^{\prime }_1\mathbf {W}\nonumber \\&\cdot \{2\mathbf {m}_1-(\mathbf {M}_2{\varvec{\alpha }}_2+\mathbf {L}{\varvec{\alpha }}_l+\mathbf {R}{\varvec{\alpha }}_r)(2-2\lambda \gamma _1+\lambda ^2\gamma _1^2+\rho ^2 \delta _1^2)\nonumber \\&-\lambda [\mathbf {m}_1 \gamma _1+\mathbf {l}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \gamma _2- \mathbf {1}\gamma _0] \nonumber \\&+\lambda ^2 \gamma _1[\mathbf {l}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \gamma _2-\mathbf {1} \gamma _0]\nonumber \\&+ \rho \delta _1[\mathbf {m}_2-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r)] \nonumber \\&+ \rho ^2 \delta _1[\mathbf {r}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \delta _2 -\mathbf {1} \delta _0]\}\end{aligned}$$
(20a)
$$\begin{aligned} {\varvec{\alpha }}_2&= (2-2\lambda \gamma _1+\lambda ^2\gamma _1^2+\rho ^2 \delta _1^2)^{-1}({\mathbf {M}}^{\prime }_2\mathbf {WM}_2)^{-1}{\mathbf {M}}^{\prime }_2\mathbf {W}\nonumber \\&\cdot \{2\mathbf {m}_1-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {L}{\varvec{\alpha }}_l+\mathbf {R}{\varvec{\alpha }}_r)(2-2\lambda \gamma _1+\lambda ^2\gamma _1^2+\rho ^2 \delta _1^2)\nonumber \\&-\lambda [\mathbf {m}_1 \gamma _1+\mathbf {l}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \gamma _2- \mathbf {1}\gamma _0] \nonumber \\&+\lambda ^2 \gamma _1[\mathbf {l}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \gamma _2-\mathbf {1} \gamma _0]\nonumber \\&+ \rho \delta _1[\mathbf {m}_2-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r)] \nonumber \\&+ \rho ^2 \delta _1[\mathbf {r}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \delta _2 -\mathbf {1} \delta _0]\}\end{aligned}$$
(20b)
$$\begin{aligned} {\varvec{\alpha }}_l&= (2-2\lambda \gamma _1+\lambda ^2\gamma _1^2+\rho ^2 \delta _1^2)^{-1}({\mathbf {L}}^{\prime }\mathbf {WL})^{-1}{\mathbf {L}}^{\prime }\mathbf {W}\nonumber \\&\cdot \{2\mathbf {m}_1-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2+\mathbf {R}{\varvec{\alpha }}_r)(2-2\lambda \gamma _1+\lambda ^2\gamma _1^2+\rho ^2 \delta _1^2)\nonumber \\&-\lambda [\mathbf {m}_1 \gamma _1+\mathbf {l}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \gamma _2- \mathbf {1}\gamma _0] \nonumber \\&+\lambda ^2 \gamma _1[\mathbf {l}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \gamma _2-\mathbf {1} \gamma _0]\nonumber \\&+ \rho \delta _1[\mathbf {m}_2-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r)] \nonumber \\&+ \rho ^2 \delta _1[\mathbf {r}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \delta _2 -\mathbf {1} \delta _0]\}\end{aligned}$$
(20c)
$$\begin{aligned} {\varvec{\alpha }}_r&= (2-2\lambda \gamma _1+\lambda ^2\gamma _1^2+\rho ^2 \delta _1^2)^{-1}({\mathbf {R}}^{\prime }\mathbf {WR})^{-1}{\mathbf {R}}^{\prime }\mathbf {W}\nonumber \\&\cdot \{2\mathbf {m}_1-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2+\mathbf {L}{\varvec{\alpha }}_l)(2-2\lambda \gamma _1+\lambda ^2\gamma _1^2+\rho ^2 \delta _1^2)\nonumber \\&-\lambda [\mathbf {m}_1 \gamma _1+\mathbf {l}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \gamma _2- \mathbf {1}\gamma _0] \nonumber \\&+\lambda ^2 \gamma _1[\mathbf {l}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \gamma _2-\mathbf {1} \gamma _0]\nonumber \\&+ \rho \delta _1[\mathbf {m}_2-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r)] \nonumber \\&+ \rho ^2 \delta _1[\mathbf {r}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \delta _2 -\mathbf {1} \delta _0]\}\end{aligned}$$
(20d)
$$\begin{aligned} {\varvec{\beta }}_1&= (2+\lambda ^2 \gamma _2+2\rho \delta _2+\rho ^2 \delta _2^2)^{-1}({\mathbf {M}}^{\prime }_1\mathbf {WM}_1)^{-1}{\mathbf {M}}^{\prime }_1\mathbf {W}\nonumber \\&\cdot \{2\mathbf {m}_2-(\mathbf {M}_2{\varvec{\beta }}_2+\mathbf {L}{\varvec{\beta }}_l+\mathbf {R}{\varvec{\beta }}_r)(2+\lambda ^2 \gamma _2+2\rho \delta _2+\rho ^2 \delta _2^2)\nonumber \\&-\lambda \gamma _2[\mathbf {m}_1-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)] \nonumber \\&+\lambda ^2 \gamma _2[\mathbf {l}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r) \gamma _1-\mathbf {1} \gamma _0]\nonumber \\&+ \rho [\mathbf {m}_2\delta _2+\mathbf {r}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)\delta _1-\mathbf {1}\delta _0] \nonumber \\&+ \rho ^2 \delta _2[\mathbf {r}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r) \delta _1 -\mathbf {1} \delta _0]\}\end{aligned}$$
(20e)
$$\begin{aligned} {\varvec{\beta }}_2&= (2+\lambda ^2 \gamma _2+2\rho \delta _2+\rho ^2 \delta _2^2)^{-1}({\mathbf {M}}^{\prime }_2\mathbf {WM}_2)^{-1}{\mathbf {M}}^{\prime }_2\mathbf {W}\nonumber \\&\cdot \{2\mathbf {m}_2-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {L}{\varvec{\beta }}_l+\mathbf {R}{\varvec{\beta }}_r)(2+\lambda ^2 \gamma _2+2\rho \delta _2+\rho ^2 \delta _2^2)\nonumber \\&-\lambda \gamma _2[\mathbf {m}_1-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)] \nonumber \\&+\lambda ^2 \gamma _2[\mathbf {l}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r) \gamma _1-\mathbf {1} \gamma _0]\nonumber \\&+ \rho [\mathbf {m}_2\delta _2+\mathbf {r}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)\delta _1-\mathbf {1}\delta _0] \nonumber \\&+ \rho ^2 \delta _2[\mathbf {r}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r) \delta _1 -\mathbf {1} \delta _0]\}\end{aligned}$$
(20f)
$$\begin{aligned} {\varvec{\beta }}_l&= (2+\lambda ^2 \gamma _2+2\rho \delta _2+\rho ^2 \delta _2^2)^{-1}({\mathbf {L}}^{\prime }\mathbf {WL})^{-1}{\mathbf {L}}^{\prime }\mathbf {W}\nonumber \\&\cdot \{2\mathbf {m}_2-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2+\mathbf {R}{\varvec{\beta }}_r)(2+\lambda ^2 \gamma _2+2\rho \delta _2+\rho ^2 \delta _2^2)\nonumber \\&-\lambda \gamma _2[\mathbf {m}_1-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)] \nonumber \\&+\lambda ^2 \gamma _2[\mathbf {l}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r) \gamma _1-\mathbf {1} \gamma _0]\nonumber \\&+ \rho [\mathbf {m}_2\delta _2+\mathbf {r}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)\delta _1-\mathbf {1}\delta _0] \nonumber \\&+ \rho ^2 \delta _2[\mathbf {r}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r) \delta _1 -\mathbf {1} \delta _0]\}\end{aligned}$$
(20g)
$$\begin{aligned} {\varvec{\beta }}_r&= (2+\lambda ^2 \gamma _2+2\rho \delta _2+\rho ^2 \delta _2^2)^{-1}({\mathbf {R}}^{\prime }\mathbf {WR})^{-1}{\mathbf {R}}^{\prime }\mathbf {W}\nonumber \\&\cdot \{2\mathbf {m}_2-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2+\mathbf {L}{\varvec{\beta }}_l)(2+\lambda ^2 \gamma _2+2\rho \delta _2+\rho ^2 \delta _2^2)\nonumber \\&-\lambda \gamma _2[\mathbf {m}_1-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)] \nonumber \\&+\lambda ^2 \gamma _2[\mathbf {l}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r) \gamma _1-\mathbf {1} \gamma _0]\nonumber \\&+ \rho [\mathbf {m}_2\delta _2+\mathbf {r}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)\delta _1-\mathbf {1}\delta _0] \nonumber \\&+ \rho ^2 \delta _2[\mathbf {r}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r) \delta _1 -\mathbf {1} \delta _0]\}\end{aligned}$$
(20h)
$$\begin{aligned} \gamma _1&= \lambda ^{-1}[(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)^{\prime } \mathbf {W} (\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)]^{-1}\nonumber \\&(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)^{\prime }\mathbf {W} \{(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)-\mathbf {m}_1\nonumber \\&+\lambda [\mathbf {l}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \gamma _2 -\mathbf {1}\gamma _0]\}\end{aligned}$$
(20i)
$$\begin{aligned} \gamma _2&= \lambda ^{-1}[(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r)^{\prime } \mathbf {W} (\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r)]^{-1}\nonumber \\&(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r)^{\prime }\mathbf {W} \{(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)-\mathbf {m}_1\nonumber \\&+\lambda [\mathbf {l}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r) \gamma _1 -\mathbf {1}\gamma _0]\}\end{aligned}$$
(20j)
$$\begin{aligned} \gamma _0&= \lambda ^{-1}({\mathbf {1}}^{\prime }\mathbf {W 1})^{-1}{\mathbf {1}}^{\prime }\mathbf {W}\{(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)-\mathbf {m}_1\nonumber \\&+\lambda [\mathbf {l}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r) \gamma _1 - (\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \gamma _2]\}\nonumber \\ \end{aligned}$$
(20k)
$$\begin{aligned} \delta _1&= \rho ^{-1}[(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)^{\prime } \mathbf {W} (\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)]^{-1}\nonumber \\&(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)^{\prime }\mathbf {W} \{\mathbf {m}_2-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r)\nonumber \\&+\rho [\mathbf {r}-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \delta _2 -\mathbf {1}\delta _0]\}\end{aligned}$$
(20l)
$$\begin{aligned} \delta _2&= \rho ^{-1}[(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r)^{\prime } \mathbf {W} (\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r)]^{-1}\nonumber \\&(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r)^{\prime }\mathbf {W} \{\mathbf {m}_2-(\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r)\nonumber \\&+\rho [\mathbf {r}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r) \delta _1 -\mathbf {1}\delta _0]\}\end{aligned}$$
(20m)
$$\begin{aligned} \delta _0&= \rho ^{-1}({\mathbf {1}}^{\prime }\mathbf {W 1})^{-1}{\mathbf {1}}^{\prime }\mathbf {W}\{\mathbf {m}_2-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r)\nonumber \\&+\rho [\mathbf {r}-(\mathbf {M}_1{\varvec{\alpha }}_1+\mathbf {M}_2{\varvec{\alpha }}_2 +\mathbf {L}{\varvec{\alpha }}_l + \mathbf {R}{\varvec{\alpha }}_r) \delta _1 - (\mathbf {M}_1{\varvec{\beta }}_1+\mathbf {M}_2{\varvec{\beta }}_2 +\mathbf {L}{\varvec{\beta }}_l + \mathbf {R}{\varvec{\beta }}_r) \delta _2]\}.\nonumber \\ \end{aligned}$$
(20n)

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Urso, P., Massari, R. Weighted Least Squares and Least Median Squares estimation for the fuzzy linear regression analysis. METRON 71, 279–306 (2013). https://doi.org/10.1007/s40300-013-0025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40300-013-0025-9

Keywords

Navigation