Skip to main content
Log in

Dynamic Pricing with Stochastic Reference Price Effect

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

We study a dynamic pricing problem of a firm facing stochastic reference price effect. Randomness is incorporated in the formation of reference prices to capture either consumers’ heterogeneity or exogenous factors that affect consumers’ memory processes. We apply the stochastic optimal control theory to the problem and derive an explicit expression for the optimal pricing strategy. The explicit expression allows us to obtain the distribution of the steady-state reference price. We compare the expected steady-state reference price to the steady-state reference price in a model with deterministic reference price effect, and we find that the former one is always higher. Our numerical study shows that the two steady-state reference prices can have opposite sensitivity to the problem parameters and the relative difference between the two can be very significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mazumdar, T., Raj, S.P., Sinha, I.: Reference price research: review and propositions. J. Mark. 69, 84–102 (2005)

    Article  Google Scholar 

  2. Briesch, R., Krishnamurthi, L., Mazumdar, T., Raj, S.: A comparative analysis of reference price models. J. Consum. Res. 24(2), 202–214 (1997)

    Article  Google Scholar 

  3. Greenleaf, E.A.: The impact of reference price effects on the profitability of price promotions. Mark. Sci. 14, 82–104 (1995)

    Article  Google Scholar 

  4. Kopalle, P.K., Rao, A.G., Assunção, J.L.: Asymmetric reference price effects and dynamic pricing policies. Mark. Sci. 15(1), 60–85 (1996)

    Article  Google Scholar 

  5. Popescu, I., Wu, Y.: Dynamic pricing strategies with reference effects. Oper. Res. 55(3), 834–848 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, Z., Chen, X., Hu, P.: Dynamic pricing with gain-seeking reference price effects. Oper. Res. 64(1), 150–157 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nasiry, J., Popescu, I.: Dynamic pricing with loss-averse consumers and peak-end anchoring. Oper. Res. 59(6), 1361–1368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Hu, P., Hu, Z.: Efficient algorithms for dynamic pricing problem with reference price effect. Manag. Sci. 63(12), 4389–4408 (2017)

    Article  Google Scholar 

  9. Fibich, G., Gavious, A., Lowengart, O.: Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects. Oper. Res. 51(5), 721–734 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, Z.: Intertemporal price discrimination via reference price effects. Oper. Res. 64(2), 290–296 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krishnamurthi, L., Mazumdar, T., Raj, S.P.: Asymmetric response to price in consumer brand choice and purchase quantity decisions. J. Consum. Res. 19(3), 387–400 (1992)

    Article  Google Scholar 

  12. Rajendran, K.N., Tellis, G.J.: Contextual and temporal components of reference price. J. Mark. 58, 22–34 (1994)

    Article  Google Scholar 

  13. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, New York (2002)

    MATH  Google Scholar 

  14. Allenby, G.M., Rossi, P.E.: Marketing models of consumer heterogeneity. J. Econom. 89(1), 57–78 (1998)

    Article  MATH  Google Scholar 

  15. Cox, J.C., Ingersoll Jr., J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bell, D.R., Lattin, J.M.: Looking for loss aversion in scanner panel data: the confounding effect of price-response heterogeneity. Mark. Sci. 19, 185–200 (2000)

    Article  Google Scholar 

  18. Miranda, M.J., Fackler, P.L.: Applied Computational Economics and Finance. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  19. Petruzzi, N., Dada, M.: Pricing and the newsvendor problem: a review with extensions. Oper. Res. 47, 183–194 (1999)

    Article  MATH  Google Scholar 

  20. Hu, Z., Nasiry, J.: Are markets with loss-averse consumers more sensitive to losses? Manag. Sci. 64(3), 1384–1395 (2018)

    Article  Google Scholar 

  21. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  22. Alfonsi, A.: On the discretization schemes for the cir (and bessel squared) processes. Monte Carlo Methods Appl. 11(4), 355–384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kounta, M., Lefebvre, M.: On a discrete version of the cir process. J. Differ. Equ. Appl. 19(8), 1276–1291 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Federgruen, A., Heching, A.: Combined pricing and inventory control under uncertainty. Oper. Res. 47(3), 454–475 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, X., Simchi-Levi, D.: Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: The finite horizon case. Oper. Res. 52, 887–896 (2004a)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, X., Simchi-Levi, D.: Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: the infinite horizon case. Math. Oper. Res. 29, 698–723 (2004b)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, X., Simchi-Levi, D.: Coordinating inventory control and pricing strategies: the continuous review model. Oper. Res. Lett. 34(3), 323–332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, X., Simchi-Levi, D.: Pricing and inventory management. The Oxford handbook of pricing management, pp. 784–824 (2012)

  29. Chen, X., Hu, P., Shum, S., Zhang, Y.: Dynamic stochastic inventory management with reference price effects. Oper. Res. 64(6), 1529–1536 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Hu.

Additional information

This paper is dedicated to Professor Yin-Yu Ye in celebration of his 70th birthday.

This research is partly supported by the National Science Foundation (Nos. CMMI-1030923, CMMI-1363261, CMMI-1538451 and CMMI-1635160), the National Natural Science Foundation of China (Nos. 71228203, 71201066 and 71520107001), and research Grant of National University of Singapore (Project R-314-000-105-133)

Appendix

Appendix

1.1 Proof of Proposition 3.1

To solve the HJB equation (3.1), we start from solving a more general finite horizon problem. That is, let

$$\begin{aligned} V(r,t) = \max _{p(s)}\left[ \int _{t}^\mathrm{T} \mathrm{e}^{-\gamma t}F(r(s),p(s))\mathrm{d}s\right] \end{aligned}$$

be the value of optimal accumulated profit (profit-to-go function) from time t to the end of horizon T when the initial reference price is r. Notice that the value function in our problem (2.6) \(V(r_0) = \lim _{T\rightarrow \infty }V(r_0,0)\).

From standard theory in stochastic optimal control, V(rt) then satisfies the HJB equation

$$\begin{aligned} \gamma V(r,t)= \max _p \left[ F(r,p) + \frac{\partial V(r,t)}{\partial t} + \alpha (p-r)\frac{\partial V(r,t)}{\partial r} + \frac{\sigma ^2r}{2}\frac{\partial ^2 V(r,t)}{\partial r^2}\right] .\qquad \end{aligned}$$
(6.1)

Using first-order condition in (6.1) and with a slight abuse of notation, we can solve p as

$$\begin{aligned} p^*(r) = \frac{c}{2} + \frac{b + \eta r}{2(a + \eta )} + \frac{\alpha }{2(a+\eta )}\times \frac{\partial V(r,t)}{\partial r}. \end{aligned}$$

Substitute the above equation into (6.1), it follows

$$\begin{aligned}&\frac{\sigma ^2}{2}r\frac{\partial ^2 V}{\partial r^2} + \frac{\partial V}{\partial t} -\gamma V + \frac{\alpha ^2}{4(a+\eta )} \left( \frac{\partial V}{\partial r}\right) ^2 +\left[ \frac{\alpha c}{2} -\alpha r + \frac{\alpha (b+\eta r)}{2(a+\eta )}\right] \frac{\partial V}{\partial r}\\&\quad - \frac{c(b+\eta r)}{2}+ \frac{(b+\eta r)^2}{4(a+\eta )} + \frac{c^2(a+\eta )}{4} = 0. \end{aligned}$$

Introducing a few new notations, this can be written concisely as:

$$\begin{aligned} \frac{\partial V}{\partial t}-\gamma V+Ar\frac{\partial ^2 V}{\partial r^2} +B\left( \frac{\partial V}{\partial r}\right) ^2 + (p_{10} + p_{11}r)\frac{\partial V}{\partial r} + p_{20} + p_{21}r + p_{22}r^2 = 0, \end{aligned}$$
(6.2)

where

$$\begin{aligned}&\displaystyle A = \frac{\sigma ^2}{2},\\&\displaystyle B = \frac{\alpha ^2}{4(a+\eta )},\\&\displaystyle p_{10} = \frac{\alpha c}{2} + \frac{\alpha b}{2(a+\eta )},\\&\displaystyle p_{11} = -\alpha + \frac{\alpha \eta }{2(a+\eta )},\\&\displaystyle p_{20} = -\frac{bc}{2} + \frac{b^2}{4(a+\eta )} + \frac{c^2(a+\eta )}{4},\\&\displaystyle p_{21} = -\frac{c\eta }{2}+\frac{b\eta }{2(a+\eta )},\\&\displaystyle p_{22} = \frac{\eta ^2}{4(a+\eta )}. \end{aligned}$$

If we assume function V(rt) has the following form:

$$\begin{aligned} V(r,t) = Q(t)r^2+R(t)r+M(t), \end{aligned}$$
(6.3)

then we get the following ordinary differential equations (ODEs):

$$\begin{aligned}&\displaystyle \frac{\mathrm{d}Q}{\mathrm{d}t}-\gamma Q + 4B Q^2 + 2p_{11}Q + p_{22} = 0, \end{aligned}$$
(6.4)
$$\begin{aligned}&\displaystyle \frac{\mathrm{d}R}{\mathrm{d}t}-\gamma R + 2AQ + 4BQR + 2p_{10}Q + p_{11}R + p_{21} = 0, \end{aligned}$$
(6.5)
$$\begin{aligned}&\displaystyle \frac{\mathrm{d}M}{\mathrm{d}t} -\gamma M + BR^2 +p_{10}R + p_{20} = 0, \end{aligned}$$
(6.6)

with terminal condition \(Q(T) = R(T) = M(T) = 0\).

We first explicitly solve ODE (6.4) by rewriting it as:

$$\begin{aligned} \frac{\mathrm{d}Q}{\mathrm{d}t} = -4B(Q-Q_1)(Q-Q_2), \end{aligned}$$

where \(Q_1<Q_2\) are the two distinct roots of the equation:

$$\begin{aligned} 4BQ^2-(\gamma -2p_{11})Q+p_{22}=0. \end{aligned}$$

Namely:

$$\begin{aligned} Q_1= & {} \frac{\gamma -2p_{11}-\sqrt{(\gamma -2p_{11})^2-16 Bp_{22}}}{8B},\\ Q_2= & {} \frac{\gamma -2p_{11}+\sqrt{(\gamma -2p_{11})^2-16 Bp_{22}}}{8B}. \end{aligned}$$

Therefore,

$$\begin{aligned}&\frac{\mathrm{d}Q}{(Q-Q_1)(Q-Q_2)}=-4B\mathrm{d}t \nonumber \\&\quad \Rightarrow \quad \frac{dQ}{Q_1-Q_2}\left[ \frac{1}{Q-Q_1} -\frac{1}{Q-Q_2}\right] = -4B \mathrm{d}t\nonumber \\&\quad \Rightarrow \quad \ln \frac{Q-Q_1}{Q-Q_2}=-4B(Q_1-Q_2)t + C\nonumber \\&\quad \Rightarrow \quad \frac{Q-Q_1}{Q-Q_2} = D\cdot \mathrm{e}^{-4B(Q_1-Q_2)t}, \end{aligned}$$
(6.7)

where C and \(D = e^C\) are constants to be determined. By \(Q(T)=0\), we can solve

$$\begin{aligned} D=\frac{Q_1}{Q_2}\mathrm{e}^{4B(Q_1-Q_2)T}. \end{aligned}$$

Substitute D back into (6.7), it follows

$$\begin{aligned} Q(t) = \frac{Q_1\mathrm{e}^{4B(Q_1-Q_2)T}-Q_1\mathrm{e}^{4B(Q_1-Q_2)t}}{Q_1/Q_2 \mathrm{e}^{4B(Q_1-Q_2)T}-\mathrm{e}^{4B(Q_1-Q_2)t}}. \end{aligned}$$
(6.8)

With the expressions for Q(t), expressions for R(t) and M(t) can then be obtained by solving () and (6.6). Consequently, \(p^*(r)\) can be determined as well. One can easily verify using Theorem 4.1 in chapter VI of [30] that \(p^*(r)\) solved in this way is indeed optimal and V(rt) is given by (6.3).

The solution to (3.1) is then obtained by letting \(T\rightarrow \infty \). Since \(Q_1<Q_2\), we have \(Q:= Q_1 = \lim _{T\rightarrow \infty }Q(t)\), where by substituting the expressions for \(B, p_{11}\) and \(p_{22}\)

$$\begin{aligned} Q=\frac{\gamma }{2\alpha ^2}(a+\eta )+\frac{2a+\eta }{2\alpha } -\frac{a+\eta }{2\alpha ^2}\Delta \end{aligned}$$

and \(\Delta \) is given by:

$$\begin{aligned} \Delta =\sqrt{\gamma ^2+2\alpha \frac{2a(\gamma +\alpha )+\gamma \eta }{\eta +a}}. \end{aligned}$$

Correspondingly, one can also obtain \(R:=\lim _{T\rightarrow \infty }R(t)\) as

$$\begin{aligned} R= & {} \frac{2p_{10}Q + p_{21} + 2AQ}{\gamma -4BQ-p_{11}}\\= & {} \left[ \frac{b}{\alpha }+\frac{\sigma ^2(a+\eta )}{\alpha ^2} + \frac{c(a+\eta )}{\alpha }\right] \frac{\gamma -\Delta }{\gamma +\Delta } +\left[ b + ca +\frac{\sigma ^2(2a+\eta )}{2\alpha } + \right] \frac{2}{\gamma +\Delta }. \end{aligned}$$

Similarly, \(M:=\lim _{T\rightarrow \infty }M(t)\) can be computed.

Now, we have explicitly solved (3.1), where \(V(r) = Qr^2 + Rr + M\) and the optimal pricing strategy can then be obtained as (3.2).

Finally, we remark that both \(Q_1\) and \(Q_2\) are positive solutions to the Algebraic Riccati Equation (ARE): \(4BQ^2-(\Gamma -2p_{11})Q+p_{22}=0\), which has no negative solution. This deviates significantly from standard linear quadratic control theory and is the primal reason we need to solve from the finite horizon problem instead of solving ARE directly.

1.2 Proof of Proposition 3.2

Note that \(r^*(t)\) follows (3.3), which is a square-root diffusion process. It is not difficult to show that \(\lambda , \mu >0\). For such square-root diffusion process, it is known that \(r^*(t)\) converges in distribution to a steady state which follows a Gamma distribution with shape parameter \(\frac{2\lambda \mu }{\sigma ^2}\) and rate parameter \(\frac{2\lambda }{\sigma ^2}\) (see, for instance, [15]).

1.3 Proof of Corollary 3.3

By Proposition 3.2, \(R_s^*\) follows a Gamma distribution and its mean and variance can then be computed as

$$\begin{aligned}&\displaystyle {{E}}[R_s^*] = \frac{2\lambda \mu }{\sigma ^2}\frac{\sigma ^2}{2\lambda } = \mu ,\\&\displaystyle \text {var}(R_s^*) = \frac{2\lambda \mu }{\sigma ^2}\left( \frac{\sigma ^2}{2\lambda }\right) ^2 = \frac{\mu }{2\lambda }\sigma ^2. \end{aligned}$$

Substituting the expressions for QR and \(\lambda \) into \(\mu \), with cumbersome algebraic manipulations, one can further obtain

$$\begin{aligned} \mu = \frac{(\gamma +\bar{\alpha })b}{2a(\gamma +\bar{\alpha })+\gamma \eta } + \frac{\sigma ^2}{2a(\gamma +\bar{\alpha })+\gamma \eta } \left[ \frac{a+\eta }{\bar{\alpha }}\left( \frac{\gamma }{2} -\frac{\Delta }{2}\right) +\frac{2a+\eta }{2}\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Hu, ZY. & Zhang, YH. Dynamic Pricing with Stochastic Reference Price Effect. J. Oper. Res. Soc. China 7, 107–125 (2019). https://doi.org/10.1007/s40305-018-0227-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-018-0227-1

Keywords

Mathematics Subject Classification

Navigation