Skip to main content
Log in

Optimal Synchronization of Complex Chaotic T-Systems and Its Application in Secure Communication

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This study investigates the optimal synchronization of two identical complex chaotic master and slave systems. The master and slave systems are complex T-systems, in which parameters of the slave system are completely uncertain. The optimal adaptive control scheme is also used for synchronization in infinite and finite time intervals. The stability of proposed method is proved using Lyapunov stability theorem. Moreover, synchronization results are applied to secure communication via modified masking method. To this end, the known parameters and the estimation of unknown parameters are used as encryption and decryption keys, respectively. Numerical simulations illustrate the ability and effectiveness of proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Al-sawalha, M. M., & Noorani, M. S. M. (2009). On anti-synchronization of chaotic systems via nonlinear control. Chaos Solitons Fractals, 42, 170–179.

    Article  MATH  Google Scholar 

  • Andrievskii, B. R., & Fradkov, A. L. (2003). Control of chaos: Methods and applications. I. Methods. Automation and Remote Control, 64, 3–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Arena, P., Baglio, S., Fortuna, L., & Manganaro, G. (1995). Hyperchaos from cellular neural networks. Electronics Letters, 31, 250–251.

    Article  Google Scholar 

  • Austin, F., Sun, W., & Lu, X. (2009). Estimation of unknown parameters and adaptive synchronization of hyperchaotic systems. Communications in Nonlinear Science and Numerical Simulation, 14(12), 4264–4272.

    Article  MathSciNet  MATH  Google Scholar 

  • Barbara, C., & Silvano, C. (2002). Hyperchaotic behavior of two bidirectional Chua’s circuits. International Journal of Circuit Theory and Applications, 30, 625–637.

    Article  MATH  Google Scholar 

  • Blasius, B., Huppert, A., & Stone, L. (1999). Complex dynamics and phase synchronization in spatially extended ecological system. Nature, 399, 354–359.

    Article  Google Scholar 

  • Boutayeb, M., Darouach, M., & Rafaralahy, H. (2002). Generalized state observers for chaotic synchronization and secure communication. IEEE Transactions on Circuits and Systems I, 49, 345–346.

    Article  MathSciNet  Google Scholar 

  • Broer, H., & Takens, F. (2010). Dynamical systems and chaos. USA: Springer.

    MATH  Google Scholar 

  • Chua, L. O., Hasler, M., Moschytz, G. S., & Neirynck, J. (1995). Autonomous cellular neural networks: A unified paradigm for pattern formation and active wave propagation. IEEE Transactions on CAS, 42, 559–577.

    Article  MathSciNet  Google Scholar 

  • Chui, C. K., & Chen, G. (1989). Linear systems an optimal control. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Cuomo, K. M., Oppenheim, A. V., & Strogatz, S. H. (1993). Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Transactions on Circuits and Systems, 40, 626–633.

    Article  Google Scholar 

  • Dedieu, H., Kennedy, M. P., & Hasler, M. (1993). Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Transactions on Circuits and Systems, 40, 634–642.

    Article  Google Scholar 

  • Elabbasy, E. M., & El-Dessoky, M. M. (2009). Adaptive anti-synchronization of different chaotic dynamical systems. Chaos Solitons Fractals, 42, 2174–2180.

    Article  MATH  Google Scholar 

  • El-Dessoky, M. M. (2009). Synchronization and anti-synchronization of a hyperchaotic Chen system. Chaos Solitons Fractals, 39, 1790–1797.

    Article  MathSciNet  MATH  Google Scholar 

  • Gohari, A. E. (2006). Optimal synchronization of Rössler system with complete uncertain parameters. Chaos Solitons Fractals, 27, 354–359.

    Google Scholar 

  • Gohary, A. E., & Bukhari, F. (2003). Optimal control of Lorenz system during different time intervals. Applied Mathematics and Computation, 144, 337–351.

    Article  MathSciNet  MATH  Google Scholar 

  • Grassi, G., & Mascolo, S. (1999). Synchronizing high dimensional chaotic systems via eigenvalue placement with application to cellular neural networks. International Journal of Bifurcation and Chaos, 9, 705–711.

    Article  MATH  Google Scholar 

  • Han, S. K., Kerrer, C., & Kuramoto, Y. (1995). Dephasing and bursting in coupled neural oscillators. Physical Review Letters, 75, 3190–3193.

    Article  Google Scholar 

  • Haroun, M. F., & Gulliver, A. T. (2015). A new 3D chaotic cipher for encrypting two data streams simultaneously. Nonlinear Dynamics, 81, 1053–1066.

    Article  MathSciNet  Google Scholar 

  • Hsieh, J. Y., Hwang, C. C., Li, A. P., & Li, W. J. (1999). Controlling hyperchaos of the Rössler system. International Journal of Control, 72, 882–886.

    Article  MathSciNet  MATH  Google Scholar 

  • Kapitaniak, T., Chua, L. O., & Zhong, G. Q. (1994). Experimental hyperchaos in coupled Chua’s circuits. IEEE Transactions on CAS, 41, 499–503.

    Article  Google Scholar 

  • Khalil, K. H. (1950). Nonlinear systems (2nd ed.). New Jersey: Prentice Hall, Michigan State University.

    Google Scholar 

  • Kheiri, H., Moghaddam, M. R., & Vafaei, V. (2011). Anti-synchronization of the T system with uncertain parameters via adaptive control. International Journal of Nonlinear Science, 12(4), 394–399.

    MathSciNet  Google Scholar 

  • Kheiri, H., & Naderi, B. (2015). Dynamical behavior and synchronization of chaotic chemical reactors model. Iranian Journal of Mathematical Chemistry, 6(1), 81–92.

    MathSciNet  MATH  Google Scholar 

  • Kheiri, H., & Naderi, B. (2015). Dynamical behavior and synchronization of hyperchaotic complex T-system. Journal of Mathematical Modelling, 3(1), 15–32.

    MathSciNet  MATH  Google Scholar 

  • Kocarev, L., Halle, K. S., Eckert, K., Chua, L. O., & Parlitz, U. (1992). Experimental demonstration of secure communication via chaotic synchronization. International Journal of Bifurcation and Chaos, 2, 709–713.

    Article  MATH  Google Scholar 

  • Lorenz, E. N. (1963). Deterministic non-periodic flows. Journal of the Atmospheric Sciences, 20, 130–141.

    Article  Google Scholar 

  • Mahmoud, G. M., Bountis, T., & Mahmoud, E. E. (2007). Active control and global synchronization of complex Chen and Lü systems. International Journal of Bifurcation and Chaos, 17, 4295–4308.

    Article  MathSciNet  MATH  Google Scholar 

  • Matsumoto, T., Chua, L. O., & Kobayashi, K. (1986). Hyperchaos: Laboratory experimental and numerical confirmation. IEEE Transactions on CAS, 33, 1143–1147.

    Article  MathSciNet  Google Scholar 

  • Mata-Machuca, J. L., Martinez-Guerra, R., Aguilar-Lopez, R., & Aguilar-Ibanez, C. (2012). A chaotic system in synchronization and secure communications. Communications in Nonlinear Science and Numerical Simulation, 17, 1706–1713.

    Article  MathSciNet  Google Scholar 

  • Naderi, B., & Kheiri, H. (2016). Exponential synchronization of chaotic system and application in secure communication. Optik-International Journal for Light and Electron Optics, 127(5), 2407–2412.

    Article  Google Scholar 

  • Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controlling chaos. Physical Review Letters, 64, 1196–1199.

    Article  MathSciNet  MATH  Google Scholar 

  • Parlitz, U., Chua, L. O., Kocarev, L., Halle, K. S., & Shang, A. (1992). Transmission of digital signals by chaotic synchronization. International Journal of Bifurcation and Chaos, 2, 973–977.

  • Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64, 821–824.

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, J. H., Ding, E. J., Ging, M., & Yang, W. (1996). Synchronizing hyperchaos with a scalar transmitted signal. Physical Review Letters, 76, 904–907.

  • Perruquetti, W., & Barbot, J. P. (2006). Chaos in automatic control. USA: CRC Press (Taylor and Francis Group).

  • Rössler, O. E. (1979). An equation for hyperchaos. Physics Letters A, 71(2–3), 155–157.

  • Smaoui, N., Karouma, A., & Zribi, M. (2011). Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 16, 3279–3293.

  • Tao, C., & Liu, X. (2007). Feedback and adaptive control and synchronization of a set of chaotic and hyperchaotic systems. Chaos, Solitons and Fractals, 32(4), 1572–1581.

    Article  MathSciNet  MATH  Google Scholar 

  • Tigen, G. (2005). Analysis of a dynamical system derived from the Lorenz system. Scientific Bulletin Politehnica University of Timisoara, Tomul, 50(64), 61–72.

    MathSciNet  Google Scholar 

  • Vaidyanathan, S. (2014). Generalised projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. International Journal of Modelling, Identification and Control, 22(3), 207–217.

    Article  MathSciNet  Google Scholar 

  • Vicente, R., Daudén, J., & Toral, R. (2005). Analysis and characterization of the hyperchaos generated by a semiconductor laser subject. IEEE Journal of Quantum Electron, 41, 541–548.

    Article  Google Scholar 

  • Wang, X., & Wang, M. (2007). Adaptive synchronization for a class of high-dimensional autonomous uncertain chaotic systems. International Journal of Modern Physics C, 18(3), 399–406.

    Article  MATH  Google Scholar 

  • Wang, Z. (2009). Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters. Communications in Nonlinear Science and Numerical Simulation, 14, 2366–2372.

    Article  Google Scholar 

  • Wu, X., Guan, Z. H., & Wu, Z. (2008). Adaptive synchronization between two different hyperchaotic systems. Nonlinear Analysis, 68(5), 1346–1351.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, T., & Chua, L. O. (1996). Secure communication via chaotic parameter modulation. IEEE Transactions on Circuits and Systems I, 43, 817–819.

    Article  Google Scholar 

  • Yu, S. M., Lü, J. H., Leung, H., & Chen, G. R. (2005). N-scroll chaotic attractors from a general jerk circuit. Circuits Systems ISCAS, 2, 1473–1476.

    Google Scholar 

  • Yua, F., & Wang, C. (2014). Secure communication based on a four-wing chaotic system subject to disturbance inputs. Optik, 125, 5920–5925.

  • Zhang, L. F. (2014). Secure communication and implementation for a chaotic autonomous system. TELKOMNIKA Indonesian Journal of Electrical Engineering, 12(1), 361–370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir Naderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, B., Kheiri, H., Heydari, A. et al. Optimal Synchronization of Complex Chaotic T-Systems and Its Application in Secure Communication. J Control Autom Electr Syst 27, 379–390 (2016). https://doi.org/10.1007/s40313-016-0245-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0245-3

Keywords

Navigation