Skip to main content

Advertisement

Log in

Evaluation of a Phase-Locked Loop Phasor Measurement Algorithm on a Harmonic Polluted Environment in Applications Such as PMU

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The use of phasor measurement units is becoming ubiquitous in modern power system as they provide dynamic monitoring of variables such as voltage and current, and also due to its capability to determine the variable positive sequence magnitude and phase. However, the increasing usage of renewables, DC grids, and power electronic devices may imply in a network environment contaminated with harmonics that might affect the correct estimation of positive sequence phasors values. This paper investigates the performance of a phase-locked loop (PLL)-based phasor measurement algorithm in a voltage and current harmonic polluted environment. PLL systems have been widely used for control of power electronics devices based on pulse-width modulation. There are in the literature several propositions of PLL architectures, and this work evaluates, among some of these possibilities, their adequacy for the aforementioned task. Detailed representation of the network elements involved is considered as well as a digital model for the PLL which can then assess its adequacy for real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Aminifar, F., Shahidehpour, M., Fotuhi-Firuzabad, M., & Kamalinia, S. (2014). Power system dynamic state estimation with synchronized phasor measurements. IEEE Transactions on Instrumentation and Measurement, 63(2), 352–363.

    Article  Google Scholar 

  • Anderson, P. M. (1995). General considerations. IEEE. https://ieeHrBexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5265619HrB. Accessed Sept 2018.

  • Bojoi, R. I., Griva, G., Bostan, V., Guerriero, M., Farina, F., & Profumo, F. (2005). Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame. IEEE Transactions on Power Electronics, 20(6), 1402–1412.

    Article  Google Scholar 

  • Burnett, R. O., Butts, M. M., & Sterlina, P. S. (1994). Power system applications for phasor measurement units. IEEE Computer Applications in Power, 7(1), 8–13.

    Article  Google Scholar 

  • Chung, S.-K. (2000). A phase tracking system for three phase utility interface inverters. IEEE Transactions on Power Electronics, 15(3), 431–438.

    Article  Google Scholar 

  • de la O Serna, J . A. (2015). Synchrophasor measurement with polynomial phase-locked-loop Taylor–Fourier filters. IEEE Transactions on Instrumentation and Measurement, 64(2), 328–337.

    Article  Google Scholar 

  • Hsieh, G.-C., & Hung, J. C. (1996). Phase-locked loop techniques. A survey. IEEE Transactions on Industrial Electronics, 43(6), 609–615.

    Article  Google Scholar 

  • IEEE standard for synchrophasor measurements for power systems. IEEE Std C37.118.1-2011 (revision of IEEE Std C37.118-2005), December 2011 (pp. 1–61).

  • Jovcic, D. (2003). Phase locked loop system for facts. IEEE Transactions on Power Systems, 18(3), 1116–1124.

    Article  Google Scholar 

  • Karimi-Ghartemani, M., Mojiri, M., Bakhshai, A., & Jain, P. (2012). A phasor measurement algorithm based on phase-locked loop. In PES T&D 2012, May 2012 (pp. 1–6).

  • Kaura, V., & Blasko, V. (1997). Operation of a phase locked loop system under distorted utility conditions. IEEE Transactions on Industry Applications, 33(1), 58–63.

    Article  Google Scholar 

  • Kim, D.-I., White, A., & Shin, Y.-J. (2018). PMU-based event localization technique for wide-area power system. IEEE Transactions on Power Systems, 33(60), 5875–5883.

    Article  Google Scholar 

  • Kundur, P. (1994). Power system stability and control. New York: McGraw-Hill.

    Google Scholar 

  • Mai, R. K., He, Z. Y., Fu, L., Kirby, B., & Bo, Z. Q. (2010). A dynamic synchrophasor estimation algorithm for online application. IEEE Transactions on Power Delivery, 25(2), 570–578.

    Article  Google Scholar 

  • Marti, J. (1982). Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations. IEEE Transactions on Power Apparatus and Systems, 101, 147–157.

    Article  Google Scholar 

  • Mellino, J. A. Z., Messina, F., Marchi, P., & Galarza, C. (2017). PLL based implementation of a PMU. In XVII workshop on information processing and control (RPIC) (pp. 1–6).

  • Moraes, R. M., Hu, Y., Stenbakken, G., Martin, K., Alves, J. E. R., Phadke, A. G., et al. (2012). Pmu interoperability, steady-state and dynamic performance tests. IEEE Transactions on Smart Grid, 3(4), 1660–1669.

    Article  Google Scholar 

  • Patil, G. C., & Thosar, A. G. (2017). Application of synchrophasor measurements using PMU for modern power systems monitoring and control. In 2017 international conference on computation of power, energy information and commuincation (ICCPEIC) (pp. 754–760).

  • Phadke, A. G. (1993). Synchronized phasor measurements in power systems. IEEE Computer Applications in Power, 6(2), 10–15.

    Article  MathSciNet  Google Scholar 

  • Phadke, A. G., Pickett, B., Adamiak, M., Begovic, M., Benmouyal, G., Burnett, R. O., et al. (1994). Synchronized sampling and phasor measurements for relaying and control. IEEE Transactions on Power Delivery, 9(1), 442–452.

    Article  Google Scholar 

  • Phadke, A. G., Thorp, J. S., & Adamiak, M. G. (1983). A new measurement technique for tracking voltage phasors, local system frequency, and rate of change of frequency. IEEE Power Engineering Review, 3(5), 23–23.

    Article  Google Scholar 

  • Ree, J. D. L., Centeno, V., Thorp, J. S., & Phadke, A. G. (2010). Synchronized phasor measurement applications in power systems. IEEE Transactions on Smart Grid, 1(1), 20–27.

    Article  Google Scholar 

  • Rodriguez, P., Pou, J., Bergas, J., Candela, I., Burgos, R., & Boroyevic, D. (2005). Double synchronous reference frame PLL for power converters control. In 2005 IEEE 36th power electronics specialists conference (pp. 1415–1421).

  • Romano, P., & Paolone, M. (2014). Enhanced interpolated-DFT for synchrophasor estimation in FPGAs: Theory, implementation, and validation of a PMU prototype. IEEE Transactions on Instrumentation and Measurement, 63(12), 2824–2836.

    Article  Google Scholar 

  • Stankovic, A. M., Lev-Ari, H., & Perisic, M. M. (2004). Analysis and implementation of model-based linear estimation of dynamic phasors. IEEE Transactions on Power Systems, 19(4), 1903–1910.

    Article  Google Scholar 

  • Strunz, K., Shintaku, R., & Gao, F. (2006). Frequency-adaptive network modeling for integrative simulation of natural and envelope waveforms in power systems and circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(12), 2788–2803.

    Article  MathSciNet  MATH  Google Scholar 

  • Thilakarathne, C., Meegahapola, L., & Fernando, N. (2017). Static performance comparison of prominent synchrophasor algorithms. In 2017 IEEE innovative smart grid technologies-Asia (ISGT-Asia) (pp. 1–6).

  • Thorp, J. S., Phadke, A. G., & Karimi, K. J. (1985). Real time voltage-phasor measurement for static state estimation. IEEE Transactions on Power Apparatus and Systems, 104(11), 3098–3106.

    Article  Google Scholar 

  • Yuan, X., Merk, W., Stemmler, H., & Allmeling, J. (2002). Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions. IEEE Transactions on Industry Applications, 38(2), 523–532.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by INERGE (Instituto Nacional de Energia Elétrica), CNPq (Conselho Nacional de Pesquisa e Desenvolvimento), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio C. S. Lima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, T.B., Berriel, R.O., Lima, A.C.S. et al. Evaluation of a Phase-Locked Loop Phasor Measurement Algorithm on a Harmonic Polluted Environment in Applications Such as PMU. J Control Autom Electr Syst 30, 424–433 (2019). https://doi.org/10.1007/s40313-019-00450-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-019-00450-5

Keywords

Navigation