Skip to main content
Log in

Adaptive multiresolution discontinuous Galerkin schemes for conservation laws: multi-dimensional case

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The concept of multiresolution-based adaptive DG schemes for non-linear one-dimensional hyperbolic conservation laws has been developed and investigated analytically and numerically in (Math Comp, doi:10.1090/S0025-5718-2013-02732-9, 2013). The key idea is to perform a multiresolution analysis using multiwavelets on a hierarchy of nested grids for the data given on a uniformly refined mesh. This provides difference information between successive refinement levels that may become negligibly small in regions where the solution is locally smooth. Applying hard thresholding the data are highly compressed and local grid adaptation is triggered by the remaining significant coefficients. The focus of the present work lies on the extension of the originally one-dimensional concept to higher dimensions and the verification of the choice for the threshold value by means of parameter studies performed for linear and non-linear scalar conservation laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adjerid S, Devine K, Flaherty J, Krivodonova L (2002) A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191:1097–1112

    Article  MathSciNet  MATH  Google Scholar 

  • Alpert B (1993) A class of bases in \(l^2\) for the sparse representation of integral operators. SIAM J. Math. Anal. 24:246–262

    Article  MathSciNet  MATH  Google Scholar 

  • Alpert B, Beylkin G, Gines D, Vozovoi L (2002) Adaptive solution of partial differential equation in multiwavelet bases. J. Comput. Phys. 182:149–190

    Article  MathSciNet  MATH  Google Scholar 

  • Archibald R, Fann G, Shelton W (2011) Adaptive discontinuous Galerkin methods in multiwavelets bases. Appl. Numer. Math. 61:879–890

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5):1749–1779

    Article  MathSciNet  MATH  Google Scholar 

  • Barth, T., Jepserson, D.: The design and application of upwind schemes on unstructered meshes. In: AIAA, 27th Aerospace Sciences Meeting (1989)

  • Bey K, Oden J (1996) \(hp\)-version discontinuous Galerkin methods for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 133(3–4):259–286

    Article  MathSciNet  MATH  Google Scholar 

  • Bramkamp F, Lamby P, Müller S (2004) An adaptive multiscale finite volume solver for unsteady and steady state flow computations. J. Comput. Phys. 197(2):460–490

    Article  MathSciNet  MATH  Google Scholar 

  • Bürger R, Ruiz-Baier R, Schneider K (2010) Adaptive multiresolution methods for the simulation of waves in excitable media. J. Sci. Comput. 43:261–290

    Article  MathSciNet  MATH  Google Scholar 

  • Calle J, Devloo P, Gomes S (2005) Wavelets and adaptive grids for the discontinuous Galerkin method. Numer. Algorithms 39(1–3):143–154

    Article  MathSciNet  MATH  Google Scholar 

  • Christov I, Popov B (2008) New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. J. Comput. Phys. 227:5736–5757

    Article  MathSciNet  MATH  Google Scholar 

  • Cockburn, B., Karniadakis, G., Shu, C.W.: The development of discontinuous Galerkin methods. Cockburn, B., Bernardo (ed.) et al., Discontinuous Galerkin methods. Theory, computation and applications. 1st international symposium on DGM, Newport, RI, USA, May 24–26, 1999. Berlin: Springer. Lect. Notes Comput. Sci. Eng. vol. 11, pp. 3–50 (2000)

  • Cockburn B, Lin SY, Shu CW (1989) TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84:90–113

    Google Scholar 

  • Cockburn B, Shu CW (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186):411–435

    MathSciNet  MATH  Google Scholar 

  • Cockburn B, Hou S, Shu CW (1990) The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: the multidimensional case. Math. Comput. 54(190):545–581

    MathSciNet  MATH  Google Scholar 

  • Cockburn B, Shu CW (1998) The Runge–Kutta discontinuous Galerkin method for conservation laws v: multidimensional systems. J. Comput. Phys. 141:199–244

    Article  MathSciNet  MATH  Google Scholar 

  • Cockburn B, Shu CW (2001) Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3):173–261

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen A (2003) Numerical analysis of wavelet methods. In: Studies in Mathematics and its Applications, vol. 32. North-Holland Publishing Co., Amsterdam

  • Cohen A, Daubechies I, Feauveau JC (1992) Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45:485–560

    Article  MathSciNet  MATH  Google Scholar 

  • Coquel F, Maday Y, Müller S, Postel M, Tran Q (2009) New trends in multiresolution and adaptive methods for convection-dominated problems. ESAIM Proc. 29:1–7

    Article  MATH  Google Scholar 

  • Dahmen W, Gottschlich-Müller B, Müller S (2000) Multiresolution schemes for conservation laws. Numer. Math. 88(3):399–443

    Article  MathSciNet  MATH  Google Scholar 

  • Dedner A, Makridakis C, Ohlberger M (2007) Error control for a class of Runge Kutta discontinuous Galerkin methods for nonlinear conservation laws. SIAM J. Numer. Anal. 45:514–538

    Article  MathSciNet  MATH  Google Scholar 

  • Domingues M, Gomes S, Roussel O, Schneider K (2008) An adaptive multiresolution scheme with local time stepping for evolutionary pdes. J. Comput. Phys. 227:3758–3780

    Article  MathSciNet  MATH  Google Scholar 

  • Gerhard N, Iacono F, May G, Müller S, Schäfer R (2014) A high-order discontinuous Galerkin discretization with multiwavelet-based grid adaptation for compressible flows. J. Sci. Comput. doi:10.1007/s10915-014-9846-9

  • Godlewski, E., Raviart, P.A.: Hyperbolic systems of conservation laws, Mathématiques & Applications (Paris) [Mathematics and Applications], vol. 3/4. Ellipses, Paris (1991)

  • Gottlieb S, Shu CW, Tadmor E (2001) Strong stability preserving high-order time discretization methods. SIAM Rev. 43(1):89–112

    Article  MathSciNet  MATH  Google Scholar 

  • Gottschlich-Müller, B., Müller, S.: Adaptive finite volume schemes for conservation laws based on local multiresolution techniques. In: Hyperbolic problems: theory, numerics, applications. In: Proceedings of the 7th international conference, Zürich, Switzerland, February 1998. Vol. I, pp. 385–394. Birkhäuser, Basel (1999)

  • Guermond J, Pasquetti R, Popov B (2011) Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230:4248–4267

    Article  MathSciNet  MATH  Google Scholar 

  • Harten A (1993) Discrete multi-resolution analysis and generalized wavelets. Appl. Numer. Math. 12:153–192

    Article  MathSciNet  MATH  Google Scholar 

  • Harten A (1995) Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48:1305–1342

    Article  MathSciNet  MATH  Google Scholar 

  • Hartmann R, Houston P (2002) Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput. 24:979–1004

    Article  MathSciNet  MATH  Google Scholar 

  • Hartmann R, Houston P (2002) Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. J. Comput. Phys. 183:508–532

    Article  MathSciNet  MATH  Google Scholar 

  • Houston P, Senior B, Süli E (2002) \(hp\)-discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity. Int. J. Numer. Methods Fluids 40(1–2):153–169

  • Hovhannisyan N, Müller S, Schäfer R (2014) Adaptive multiresolution discontinuous galerkin schemes for conservation laws. Math. Comput. 83(285):113–151

    Google Scholar 

  • Kaibara, M., Gomes, S.: A fully adaptive multiresolution scheme for shock computations. In: Godunov methods. Theory and applications. International conference, Oxford, GB, October 1999, pp. 497–503. Kluwer Academic/Plenum Publishers, New York (2001)

  • Keinert, F.: Wavelets and multiwavelets. In: Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2004)

  • Kurganov A, Petrova G, Popov B (2007) Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput. 29(6):1064–8275

    Article  MathSciNet  MATH  Google Scholar 

  • Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7):674–693

    Article  MATH  Google Scholar 

  • Müller, S.: Adaptive multiscale schemes for conservation laws. In: Lecture Notes in Computational Science and Engineering, vol. 27. Springer, Berlin (2003)

  • Müller, T.: Construction of genuinely multi-dimensional multiwavelets. Bachelor thesis, RWTH Aachen University (2013)

  • Müller, S.: Multiresolution schemes for conservation laws. DeVore, Ronald (ed.) et al., Multiscale, nonlinear and adaptive approximation. Dedicated to Wolfgang Dahmen on the occasion of his 60th birthday, pp. 379–4080. Springer, Berlin (2009)

  • Müller S, Helluy P, Ballmann J (2010) Numerical simulation of a single bubble by compressible two-phase fluids. Int. J. Numer. Meth. F. 62(6):591–631

    MathSciNet  MATH  Google Scholar 

  • Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory, Report (LA-UR-73-479) (1973)

  • Remacle JF, Flaherty J, Shephard M (2003) An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems. SIAM Rev. 45(1):53–72

    Article  MathSciNet  MATH  Google Scholar 

  • Roussel, O., Schneider, K.: A fully adaptive multiresolution scheme for 3D reaction-diffusion equations. In: Finite volumes for complex applications III. Problems and perspectives. Papers from the 3rd symposium of finite volumes for complex applications, Porquerolles, France, June 24–28, 2002, pp. 833–840. Hermes Penton Science, London (2002)

  • Schäfer, R.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Ph.D. thesis, RWTH Aachen University (2011)

  • Schneider K, Roussel O (2010) Coherent vortex simulation of weakly compressible turbulent mixing layers using adaptive multiresolution methods. J. Comput. Phys. 229(6):2267–2286

    Article  MathSciNet  MATH  Google Scholar 

  • Schneider K, Vasilyev O (2010) Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 42:473–503

    Article  MathSciNet  MATH  Google Scholar 

  • Shelton, A.B.: A multi-resolution discontinuous Galerkin method for unsteady compressible flows. Ph.D. thesis, Georgia Institute of Technology (2008)

  • Strela, V.: Multiwavelets: Theory and applications. Ph.D. thesis, Massachusetts Institute of Technology (1996)

  • Wang L, Mavriplis D (2009) Adjoint-based \(hp\) adaptive discontinuous Galerkin methods for the 2d compressible Euler equations. J. Comput. Phys. 228(20):7643–7661

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, T., Kolarov, K., Lynch, W.: Barysymmetric multiwavelets on triangles. IRC Report 1997–006, Standford University (1997)

Download references

Acknowledgments

Financial support has been provided by the German Research Foundation (Deutsche Forschungsgemeinschaft — DFG) in the framework of the Collaborative Research Center SFB-TR-40 and the Research Unit FOR 1779.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Gerhard.

Additional information

Communicated by Eduardo Souza de Cursi.

Appendix: multiwavelets on the reference element \([0,1]^2\)

Appendix: multiwavelets on the reference element \([0,1]^2\)

In this section we give some examples of multiwavelets which are constructed by Algorithm 1 and used for the computations in Sect. 5.

For a detailed description of the construction we refer to Müller (2013). To simplify their representation we use the following initialization in step (i) of Algorithm 1:

$$\begin{aligned}&\psi _{\lambda , i,0}({\mathbf x}) := \left\{ \begin{array}{l@{\quad }l} \left( {\mathbf x}-{\mathbf x}_c\right) ^i &{} \text {if } {\mathbf x}\in (0.5,1.0)^2 \\ -\left( {\mathbf x}-{\mathbf x}_c\right) ^i &{} \text {if } {\mathbf x}\in (0, 0.5)^2 \\ 0&{}\text {else} \end{array}\right. , \quad \\&\psi _{\lambda , i,1}({\mathbf x}) := \left\{ \begin{array}{l@{\quad }l} \left( {\mathbf x}-{\mathbf x}_c\right) ^i &{} \text {if } {\mathbf x}\in (0.5,1) \times (0,0.5) \\ -\left( {\mathbf x}-{\mathbf x}_c\right) ^i &{} \text {if } {\mathbf x}\in (0,0.5) \times (0.5,1)\\ 0&{}\text {else} \end{array}\right. , \\&\psi _{\lambda , i,2}({\mathbf x}) := \left\{ \begin{array}{l@{\quad }l} \left( {\mathbf x}-{\mathbf x}_c\right) ^i &{} \text {if } {\mathbf x}\in (0,0.5)^2 \cup (0,5,1)^2 \\ -\left( {\mathbf x}-{\mathbf x}_c\right) ^i &{} \text {if } {\mathbf x}\in (0.5,1) \times (0, 0.5) \cup (0,0.5) \times (0.5,1)\\ 0&{}\text {else} \end{array}\right. , \end{aligned}$$

with \({\mathbf x}_c = \left( 0.5, 0.5 \right) ^t\).

Since the construction is done on a reference element, the uniform boundedness of the multiwavelets in (3.8) is satisfied for any scaling of the multiwavelets on the reference element. The multiwavelets we use in our computations in Section 5 are normalized with respect to \(L_2((0,1)^2)\) on the reference element and then shifted to the local cells in the grid.

In Tables 3 and 4, we list all multiwavelets for \(p=1,2,3\). The multiwavelets are shown here without normalization to keep them clearly arranged. For simplicity we name the multiwavelets on the reference element \(V_{\lambda } = (0,1)^2\) by \(\hat{\psi }_{i}\). The multiwavelets are enumerated from \(1\) to \(3 \vert {\mathcal P}\vert \). Then a multiwavelet is uniquely defined by four polynomials:

$$\begin{aligned} \hat{\psi }_{i}(x,y) := \left\{ {\begin{array}{l@{\quad }l} \hat{\psi }_{i, 1}(x,y) &{} \text { if } (x,y) \in [0.5,1] \times [0.5,1],\\ \hat{\psi }_{i, 2}(x,y) &{} \text { if } (x,y) \in (0.5,1) \times (0,0.5),\\ \hat{\psi }_{i, 3}(x,y) &{} \text { if } (x,y) \in (0,0.5) \times (0,0.5),\\ \hat{\psi }_{i, 4}(x,y) &{} \text { if } (x,y) \in (0,0.5) \times (0.5,1),\\ 0&{} \text { else. } \end{array}}\right. \end{aligned}$$
Table 3 Wavelets for \(p=1,2,3\)—part I
Table 4 Wavelets for \(p=1,2,3\)—part II

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhard, N., Müller, S. Adaptive multiresolution discontinuous Galerkin schemes for conservation laws: multi-dimensional case. Comp. Appl. Math. 35, 321–349 (2016). https://doi.org/10.1007/s40314-014-0134-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-014-0134-y

Keywords

Mathematics Subject Classification

Navigation