Skip to main content
Log in

A state estimation approach based on stochastic expansions

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a new approach for state estimation problems. It is based on the representation of random variables using stochastic functions. Its main idea is to expand the state variables in terms of the noise variables of the system, and then estimate the unnoisy value of the state variables by taking the mean value of the stochastic expansion. Moreover, it was shown that in some situations, the proposed approach may be adapted to the determination of the probability distribution of the state noise. For the determination of the coefficients of the expansions, we present three approaches: moment matching (MM), collocation (COL) and variational (VAR). In the numerical analysis section, three examples are analyzed including a discrete linear system, the Influenza in a boarding school and the state estimation problem in the Hodgkin–Huxley’s model. In all these examples, the proposed approach was able to estimate the values of the state variables with precision, i.e., with very low RMS values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Andrieu C, Doucet A, Singh SS, Tadic VB (2004) Particle methods for change detection, system identification, and control. Proc IEEE 92(3):423–438

    Article  Google Scholar 

  • Bailey NT (1975) The mathematical theory of infectious diseases. Hafner Press-MacMillian Pub. Co, New York

    MATH  Google Scholar 

  • Blanchard ED, Sandu A, Sandu C (2010) A polynomial chaos-based Kalman filter approach for parameter estimation of mechanical systems. J Dyn Syst Meas Control 1326:061404

    Article  Google Scholar 

  • Bobrowski A (2005) Functional analysis for probability and stochastic processes: an introduction. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Carpenter JCP, Fearnhead P (2004) An improved particle filter for non-linear problems. IEE Proceedings Radar, Sonar and Navigation 146(1):2–7

    Article  Google Scholar 

  • de Cursi ES, Sampaio R (2015) Uncertainty quantification and stochastic modeling with Matlab. Elsevier, Amsterdam (ISTE, London)

    MATH  Google Scholar 

  • Estumano D, Orlande H, Colaco M, Dulikravich G (2013) State estimation problem for Hodgkin–Huxley’s model: a comparison of particle filter algorithms. In: 4th inverse problems, design and optimization symposium (IPDO-2013)

  • Evensen G (2009) The ensemble Kalman filter for combined state and parameter estimation. IEEE Control Syst 29(3):83–104

    Article  MathSciNet  Google Scholar 

  • Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics. J Geophys Res 99:10143–10162

    Article  Google Scholar 

  • Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Dover Publications Inc., Mineola

    MATH  Google Scholar 

  • Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc F (Radar Signal Process) 140(6):107–113

    Article  Google Scholar 

  • Grooms I, Lee Y, Majda AJ (2014) Ensemble Kalman filters for dynamical systems with unresolved turbulence. J Comput Phys 273:435–452

    Article  MathSciNet  MATH  Google Scholar 

  • Harlim J, Mahdi A, Majda AJ (2014) An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models. J Comput Phys 257(Part A):782–812

    Article  MathSciNet  MATH  Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and it’s application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASM J Basic Eng 82(Series D):35–45

    Article  Google Scholar 

  • Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. J Basic Eng 83(1):95–108

    Article  MathSciNet  Google Scholar 

  • Kotecha JH, Djuric PM (2003) Gaussian particle filtering. IEEE Trans Signal Process 51(10):2592–2601

    Article  MathSciNet  MATH  Google Scholar 

  • Liu JS, Chen R (1998) Sequential monte carlo methods for dynamic systems. J Am Stat Assoc 93:1032–1044

    Article  MathSciNet  MATH  Google Scholar 

  • Ljung L (1979) Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans Autom Control 24(1):36–50

    Article  MathSciNet  MATH  Google Scholar 

  • Long Q, Scavino M, Tempone R, Wang S (2013) Fast estimation of expected information gains for bayesian experimental designs based on Laplace approximations. Comput Methods Appl Mech Eng 259:24–39

    Article  MathSciNet  MATH  Google Scholar 

  • Lopez RH, de Cursi ES, Lemosse D (2011) Approximating the probability density function of the optimal point of an optimization problem. Eng Optim 43(3):281–303

    Article  MathSciNet  Google Scholar 

  • Lopez RH, Miguel LFF, de Cursi JES (2013) Uncertainty quantification for algebraic systems of equations. Comput Struct 128:189–202

    Article  Google Scholar 

  • Lopez RH, da Silva CR Jr (2015) A non-intrusive methodology for the representation of crack growth stochastic processes. Mech Res Commun 64:23–28

    Article  Google Scholar 

  • Lopez RH, Miguel LFF, Belo IM, Souza Cursi JE (2014) Advantages of employing a full characterization method over FORM in the reliability analysis of laminated composite plates. Compos Struct 107:635–642

    Article  Google Scholar 

  • Madankan R, Singla P, Singh T, Scott PD (2013) Polynomial-chaos-based Bayesian approach for state and parameter estimations. J Guidance Control Dyn W04417 36(4):1058–1074

  • Marzouk YM, Najm HN, Rahn LA (2007) Stochastic spectral methods for efficient Bayesian solution of inverse problems. J Comput Phys 224(2):560–586

    Article  MathSciNet  MATH  Google Scholar 

  • Maybeck PS (1979) Stochastic models, estimation and control. Volume I, Academic Press, Cambridge

  • Nagel JB, Sudret B (2016) Spectral likelihood expansions for Bayesian inference. J Comput Phys 309:267–294

    Article  MathSciNet  MATH  Google Scholar 

  • Nobile F, Tempone R, Webster CG (2008) A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J Numer Anal 46(5):2309–2345

    Article  MathSciNet  MATH  Google Scholar 

  • Nouy A, Le Matre OP (2009) Generalized spectral decomposition for stochastic nonlinear problems. J Comput Phys 228(1):202–235

    Article  MathSciNet  MATH  Google Scholar 

  • Saad GA (2007) Stochastic data assimilation with application to multi-phase flow and health monitoring problems. Comput Geosci 14(4):721–744

    Google Scholar 

  • Saad G, Ghanem R (2009) Characterization of reservoir simulation models using a polynomial chaos-based ensemble Kalman filter. Water Resour Res 45(4). doi:10.1029/2008WR007148

  • Sorenson HW (1970) Least-squares estimation: from Gauss to Kalman. IEEE Spectr 7(7):63–68

    Article  Google Scholar 

  • Varon LAB, Orlande HRB, Eliabe GE (2015) Estimation of state variables in the hyperthermia therapy of cancer with heating imposed by radiofrequency electromagnetic waves. Int J Therm Sci 98:228–236

    Article  Google Scholar 

  • Wiener N (1938) The homogeneous chaos. Am J Math 60(23–26):897–936

    Article  MathSciNet  MATH  Google Scholar 

  • Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng L, Zhang D (2010) A stochastic collocation based Kalman filter for data assimilation. Comput Geosci 14(4):721–744

    Article  MATH  Google Scholar 

  • Zhen Y, Harlim J (2015) Adaptive error covariances estimation methods for ensemble Kalman filters. J Comput Phys 294:619–638

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Carlon.

Additional information

Communicated by Dr. Jose Alberto Cuminato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, R.H., Cursi, J.E.S. & Carlon, A.G. A state estimation approach based on stochastic expansions. Comp. Appl. Math. 37, 3399–3430 (2018). https://doi.org/10.1007/s40314-017-0515-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0515-0

Keywords

Mathematics Subject Classification

Navigation