Skip to main content

Advertisement

Log in

Global dynamics of a vector-borne disease model with infection ages and general incidence rates

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

A vector-borne disease model with general incidence rates is proposed and investigated in this paper, where both vector and host are stratified by infection ages in the form of a hyperbolic system of partial differential equations coupled with ordinary differential equations. The existence, uniqueness, nonnegativeness, and boundedness of solution of the model are studied for biologically reasonable purpose. Furthermore, a global threshold dynamics of the system is established by constructing suitable Lyapunov functionals, which is determined by the basic reproduction number \(\mathcal {R}_0\): the infection-free equilibrium is globally asymptotically stable when \(\mathcal {R}_0<1\) while the endemic equilibrium is globally asymptotically stable when \(\mathcal {R}_0>1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altizer S, Dobson A, Hosseini P et al (2006) Seasonality and the dynamics of infectious diseases. Ecol Lett 9(4):467–484

    Article  Google Scholar 

  • Anderson RM, May RM (1978) Regulation and stability of host-parasite population interactions: I. Regulatory processes. J Anim Ecol 47:219–247

    Article  Google Scholar 

  • Antonovics J, Iwasa Y, Hassell MP (1995) A generalized model of parasitoid, venereal, and vector-based transmission processes. Am Nat 145(5):661–675

    Article  Google Scholar 

  • Avila-Vales E, Buonomo B (2015) Analysis of a mosquito-borne disease transmission model with vector stages and nonlinear forces of infection. Ricerche di Matematica. 64(2):377–390

    Article  MathSciNet  MATH  Google Scholar 

  • Aron JL (1988) Mathematical modelling of immunity to malaria. Math Biosci 90(1):385–396

    Article  MathSciNet  MATH  Google Scholar 

  • Barlow ND (2000) Non-linear transmission and simple models for bovine tuberculosis. J Anim Ecol 69(4):703–713

    Article  Google Scholar 

  • Begon M, Hazel SM, Baxby D et al (1999) Transmission dynamics of a zoonotic pathogen within and between wildlife host species. Proc R Soc Lond B Biol Sci 266(1432):1939–1945

    Article  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP et al (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  Google Scholar 

  • Bowman C, Gumel AB, Van den Driessche P et al (2005) A mathematical model for assessing control strategies against West Nile virus. Bull Math Biol 67(5):1107–1133

    Article  MathSciNet  MATH  Google Scholar 

  • Brand SPC, Rock KS, Keeling MJ (2016) The interaction between vector life history and short vector life in vector-borne disease transmission and control. PLoS Comput Biol 12(4):e1004837

  • Briggs CJ, Godfray HCJ (1995) The dynamics of insect-pathogen interactions in stage-structured populations. Am Nat 145(6):855–887

    Article  Google Scholar 

  • Browne CJ, Pilyugin SS (2013) Global analysis of age-structured within-host virus model. Discret Contin Dyn Syst Ser B 18(8):1999–2017

    Article  MathSciNet  MATH  Google Scholar 

  • Capasso V, Grosso E, Serio G (1977) I modelli matematici nella indagine epidemiologica. Applicazione all’epidemia di colera verificatasi in Bari nel 1973 (italian). Annali Sclavo. 1977(19):193–208

    Google Scholar 

  • Capasso V, Serio G (1978) A generalization of the Kermack-Mc Kendrick deterministic epidemic model. Math Biosci 42:41–61

    Article  MATH  Google Scholar 

  • Caminade C, McIntyre MK, Jones AE (2016) Climate change and vector-borne diseases: where are we next heading? J Infect Dis 214(9):1300–1301

    Article  Google Scholar 

  • Centers for Disease Control and Prevention (2002) Provisional surveillance summary of the West Nile virus epidemic-United States, January–November 2002. MMWR. Morbid Mortality Week Rep 51(50):1129–1133

  • Chen Y, Zou S, Yang J (2016) Global analysis of an SIR epidemic model with infection age and saturated incidence. Nonlinear Anal Real World Appl 30:16–31

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Kretzschmar M (1991) Patterns in the effects of infectious diseases on population growth. J Math Biol 29(6):539–570

    Article  MathSciNet  MATH  Google Scholar 

  • Dietz K, Molineaux, L, Thomas A (1974) A malaria model tested in the African savannah. Bull World Health Org 50(3–4):347

  • Feng X, Ruan S, Teng Z, Wang K (2015) Stability and backward bifurcation in a malaria transmission model with applications to the control of malaria in China. Math Biosci 266:52–64

    Article  MathSciNet  MATH  Google Scholar 

  • Feng Z, Velasco-Hernández JX (1997) Competitive exclusion in a vector-host model for the dengue fever. J Math Biol 35(5):523–544

    Article  MathSciNet  MATH  Google Scholar 

  • Forouzannia F, Gumel AB (2014) Mathematical analysis of an age-structured model for malaria transmission dynamics. Math Biosci 247(2):80–94

    Article  MathSciNet  MATH  Google Scholar 

  • Georgescu P, Hsieh YH (2006) Global stability for a virus dynamics model with nonlinear incidence of infection and removal. SIAM J Appl Math 67:337–353

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK (1988) Asymptotic behavior of dissipative systems. Am. Math. Soc, Providence, RI

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  MathSciNet  MATH  Google Scholar 

  • Hirsch WM, Hanisch H, Gabriel J-P (1985) Differential equation models of some parasitic infections: methods for the study of asymptotic behavior. Commun Pure Appl Math 38:733–753

    Article  MathSciNet  MATH  Google Scholar 

  • Hochberg ME (1991) Non-linear transmission rates and the dynamics of infectious disease. J Theoret Biol 153(3):301–321

    Article  Google Scholar 

  • Hollingsworth TD, Pulliam JRC, Funk S et al (2015) Seven challenges for modelling indirect transmission: vector-borne diseases, macroparasites and neglected tropical diseases. Epidemics 10:16–20

    Article  Google Scholar 

  • Iannelli M (1995) Mathematical theory of age-structured population dynamics. In: Applied mathematics monographs, vol 7, comitato Nazionale per le Scienze Matematiche, Consiglio Nazionale delle Ricerche (C.N.R.), Giardini, Pisa

  • Inaba H, Sekine H (2004) A mathematical model for Chagas disease with infection-age-dependent infectivity. Math Biosci 190(1):39–69

    Article  MathSciNet  MATH  Google Scholar 

  • Knell RJ, Begon M, Thompson DJ (1996) Transmission dynamics of Bacillus thuringiensis infecting Plodia interpunctella: a test of the mass action assumption with an insect pathogen. Proc R Soc Lond B Biol Sci 263(1366):75–81

    Article  Google Scholar 

  • Korobeinikov A (2009) Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and nonlinear incidence rate. Math Med Biol 26:225–239

    Article  MATH  Google Scholar 

  • Korobeinikov A (2007) Global properties of infectious disease models with nonlinear incidence. Bull Math Biol 69:1871–1886

    Article  MathSciNet  MATH  Google Scholar 

  • Kuniya T (2014) Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients. Appl Math Lett 27:15–20

    Article  MathSciNet  MATH  Google Scholar 

  • Kuniya T, Oizumi R (2015) Existence result for an age-structured SIS epidemic model with spatial diffusion. Nonlinear Anal Real World Appl 23:196–208

    Article  MathSciNet  MATH  Google Scholar 

  • Lutambi AM, Penny MA, Smith T, Chitnis N (2013) Mathematical modelling of mosquito dispersal in a heterogeneous environment. Math Biosci 241:198–216

    Article  MathSciNet  MATH  Google Scholar 

  • Lashari AA, Zaman G (2011) Global dynamics of vector-borne diseases with horizontal transmission in host population. Comput Math Appl 61(4):745–754

    Article  MathSciNet  MATH  Google Scholar 

  • Liu H, Yu J, Zhu G (2006) Analysis of a vector-host malaria model with impulsive effect and infection-age. Adv Comp Syst 9(3):237–248

    Article  MathSciNet  MATH  Google Scholar 

  • Mandal S, Sarkar RR, Sinha S (2011) Mathematical models of malaria-a review. Malaria J 10(1):202

    Article  Google Scholar 

  • Macdonald G (1952) The analysis of equilibrium in malaria. Trop Dis Bull 49(9):813–829

    Google Scholar 

  • Maidana NA, Yang HM (2008) Describing the geographic spread of dengue disease by traveling waves. Math Biosci 215(1):64–77

    Article  MathSciNet  MATH  Google Scholar 

  • Magal P, McCluskey CC, Webb GF (2010) Lyapunov functional and global asymptotic stability for an infection-age model. Appl Anal 89(7):1109–1140

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson RM, May RM (1978) Regulation and stability of host-parasite population interactions: II. Destabilizing processes. J Anim Ecol 47:249–267

    Article  Google Scholar 

  • McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends Ecol Evol 16(6):295–300

    Article  Google Scholar 

  • Melnik AV, Korobeinikov A (2013) Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Math Biosci Eng 10(2):369–378

    Article  MathSciNet  MATH  Google Scholar 

  • Nash D, Mostashari F, Fine A et al (2001) The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 344(24):1807–1814

    Article  Google Scholar 

  • Ngwa GA, Shu WS (2000) A mathematical model for endemic malaria with variable human and mosquito populations. Math Comput Model 32:747–763

    Article  MathSciNet  MATH  Google Scholar 

  • Novoseltsev VN, Michalski AI, Novoseltseva JA et al (2012) An age-structured extension to the vectorial capacity model. PloS One 7(6):e39479

  • Park TR (2004) Age-dependence in epidemic models of vector-borne infections. The University of Alabama in Huntsville, Thesis

  • Qiu Z (2008) Dynamical behavior of a vector-host epidemic model with demographic structure. Comput Math Appl 56(12):3118–3129

    Article  MathSciNet  MATH  Google Scholar 

  • Rock KS, Wood DA, Keeling MJ (2015) Age-and bite-structured models for vector-borne diseases. Epidemics 12:20–29

    Article  Google Scholar 

  • Roop-O P, Chinviriyasit W, Chinviriyasit S (2015) The effect of incidence function in backward bifurcation for malaria model with temporary immunity. Math Biosci 265:47–64

    Article  MathSciNet  MATH  Google Scholar 

  • Ross R (1910) The prevention of malaria. J. Murray, London

    Google Scholar 

  • Ross R (1911) Some quantitative studies in epidemiology. Nature 87:466–467

    Article  MATH  Google Scholar 

  • Ruan S, Xiao D, Beier JC (2008) On the delayed Ross-Macdonald model for malaria transmission. Bull Math Biol 70(4):1098–1114

    Article  MathSciNet  MATH  Google Scholar 

  • Smith HL, Thieme HR (2011) Dynamical systems and population persistence. American Mathematical Society, Providence, RI

    MATH  Google Scholar 

  • Tahir MT (2017) Incidence of dengue haemorrhagic fever in local population of Lahore. Pak Biomed 25(2):93–96

    Google Scholar 

  • Thieme HR (2000) Uniform persistence and permanence for non-autonomous semiflows in population biology. Math Biosci 166:173–201

    Article  MathSciNet  MATH  Google Scholar 

  • Tumwiine J, Mugisha JYT, Luboobi LS (2007) A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity. Appl Math Comput 189(2):1953–1965

    MathSciNet  MATH  Google Scholar 

  • Saul A (1996) Transmission dynamics of Plasmodium falciparum. Parasitol Today 12:74–79

    Article  Google Scholar 

  • Soufiane B, Touaoula TM (2016) Global analysis of an infection age model with a class of nonlinear incidence rates. J Math Anal Appl 434:1211–1239

    Article  MathSciNet  MATH  Google Scholar 

  • Vargas-De-León C (2012) Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes. Math Biosci Eng 9(1):165–174

    Article  MathSciNet  MATH  Google Scholar 

  • Vargas-De-León C, Esteva L, Korobeinikov A (2014) Age-dependency in host-vector models: the global analysis. Appl Math Comput 243:969–981

    MathSciNet  MATH  Google Scholar 

  • Wang X, Lou Y, Song X (2017a) Age-structured within-host hiv dynamics with multiple target cells. Stud Appl Math 138(1):43–76

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Chen, Y, Liu S (2017b) Dynamics of an age-structured host-vector model for malaria transmission. Math Methods Appl Sci. https://doi.org/10.1002/mma.4723

  • Wang X, Chen Y, Martcheva M, Rong L (2017c) Threshold dynamics of an age-structured vector-borne disease model with general nonlinear incidence rates. Nonlinear Anal Real World Appl (Submitted)

  • Wang J, Guo M, Liu S (2017d) SVIR epidemic model with age structure in susceptibility, vaccination effects and relapse. IMA J Appl Math 82(5):945–970

  • Wang J, Zhang R, Kuniya T (2015) The dynamics of an SVIR epidemiological model with infection age. IMA J Appl Math 81(2):321–343

    Article  MathSciNet  MATH  Google Scholar 

  • World Health Organization: (2016) Fact sheet: world malaria report 2016. http://www.who.int/malaria/media/world-malaria-report-2016/en/. Accessed Dec 2016

  • Yang J, Chen Y, Kuniya T (2017) Threshold dynamics of an age-structured epidemic model with relapse and nonlinear incidence. IMA J Appl Math 82(3):629–655

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

X. Wang is supported by NSFC (no. 11771374), the CSC (201508410281), the Nanhu Scholar Program for Young Scholars of Xinyang Normal University, the Program for Science and Technology Innovation Talents in Universities of Henan Province (17HASTIT011), the Universities Young Teachers Program of Henan Province (2014GGJS-093). Y. Chen is supported by NSERC. S. Liu is supported by NSFC (no. 11471089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Wang.

Additional information

Communicated by Geraldo Diniz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, Y. & Liu, S. Global dynamics of a vector-borne disease model with infection ages and general incidence rates. Comp. Appl. Math. 37, 4055–4080 (2018). https://doi.org/10.1007/s40314-017-0560-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0560-8

Keywords

Mathematics Subject Classification

Navigation