Skip to main content
Log in

An \((R',S')\)-norm fuzzy relative information measure and its applications in strategic decision-making

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this communication, we propose two quantities named ‘An \((R', S')\)-norm directed divergence measure’ and ‘\((R', S')\)-norm fuzzy directed divergence measure’, establish their validity and discuss their properties. Further, the performance of proposed divergence measure is compared with some existing measures through a numerical example. Finally, the application of proposed fuzzy directed divergence measure is given in strategic decision-making and the outcome is compared with other methods in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ali SM, Silvey SD (1966) A general class of coefficients of divergence of one distribution from another. J Roy Stat Soc B 28:131–142

    MathSciNet  MATH  Google Scholar 

  • Aczel J, Daroczy Z (1975) On measures of information and their characterization. Academic Press, New York

    MATH  Google Scholar 

  • Boekee DE, Vander Lubbe JCA (1980) The R-norm information measure. Inf Control 45:136–155

    Article  MathSciNet  MATH  Google Scholar 

  • Bhandari D, Pal NR (1993) Some new information measures for fuzzy sets. Inf Sci 67(3):204–228

    Article  MathSciNet  MATH  Google Scholar 

  • Bajaj RK, Hooda DS (2010) On some new generalized measures of fuzzy information. World Acad Sci Eng Technol 62:747–753

    Google Scholar 

  • Bhatia PK, Singh S (2012) Three families of generalized fuzzy directed divergence. AMO Adv Model Optim 14(3):599–614

    MathSciNet  MATH  Google Scholar 

  • Bhandari D, Pal NR, Majumdar DD (1992) Fuzzy divergence, probability measure of fuzzy events and image thresholding. Inf Sci 13:857–867

    Google Scholar 

  • Bhatia PK, Singh S (2013) A new measure of fuzzy directed divergence and its applications in image segmentation. Int J Intell Syst Appl 4:81–89

    Google Scholar 

  • Brauers WKM, Zavadskas EK (2006) The MOORA method and its application to privatization in transition economy. Control Cybern 35(2):443–468

    MathSciNet  MATH  Google Scholar 

  • Bouchon-Meunier B, Rifqi M, Bothorel S (1996) Towards general measures of comparison of objects. Fuzzy Sets Syst 84:143–153

    Article  MathSciNet  MATH  Google Scholar 

  • Bassat Ben M (1978) \(f\)-entropies, probability of error and feature selection. Inf Control 39:227–242

    Article  MathSciNet  MATH  Google Scholar 

  • Burbea J, Rao CR (1982) Entropy differential metric, distance and divergence measures in probability spaces: a unified approach. J Multivar Anal 12:576–579

    Article  MathSciNet  MATH  Google Scholar 

  • Csiszar J (1967) Information type measure of differences of probability distribution and indirect observations. Stud Sci Mater Hungary 2:299–318

    MathSciNet  MATH  Google Scholar 

  • Chen CH (1973) Statistical pattern recognition, vol 4. Hayden Book Bo, Rochelle Park, NJ

    Google Scholar 

  • De Luca A, Termini S (1972) A definition of a non-probabilistic entropy in the setting of fuzzy sets theory. Inf Control 20:301–312

    Article  MATH  Google Scholar 

  • Fan J, Xie W (1999) Distance measures and induced fuzzy entropy. Fuzzy Sets Syst 104(2):305–314

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreri C (1980) Hyper entropy and related hetrogeneity divergence and information measure. Statistica 40(2):155–168

    MathSciNet  MATH  Google Scholar 

  • Fan S, Yang S, He P, Nie H (2011) Infrared electric image thresholding using two dimensional fuzzy entropy. Energy Proc 12:411–419

    Article  Google Scholar 

  • Hooda DS (2004) On generalized measures of fuzzy entropy. Math Slovaca 54:315–325

    MathSciNet  MATH  Google Scholar 

  • Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications. Springer, New York

    Book  MATH  Google Scholar 

  • Hwang CH, Yang MS (2008) On entropy of fuzzy sets. Int J Uncertain Fuzzy Knowel Based Syst 16(4):519–527

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh M, Das D, Ray C, Chakraborty AK (2010) Autumated leukocyte recoginition using fuzzy divergence. Micron 41:840–846

    Article  Google Scholar 

  • Joshi R, Kumar S (2017) An \((R, S)\)-norm fuzzy information measure with its applications in multiple attribute decision making. Comput Appl Math. https://doi.org/10.1007/s40314-017-0491-4

  • Joshi R, Kumar S (2016) A new approach in multiple attribute decision making using \(R\)-norm entropy and Hamming distance measure. Int J Inf Manag Sci 27:253–268

    Google Scholar 

  • Joshi R, Kumar S, Gupta D, Kaur H (2017) A Jensen-\(\alpha \)-Norm dissimilarity measure for intuitionistic fuzzy sets and its applications in multiple attribute decision making. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-017-0389-8

    Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  MathSciNet  MATH  Google Scholar 

  • Kullback S (1959) Information theory and statistics. Wiley, New York

    MATH  Google Scholar 

  • Kapur JN (1984) A comparative assessment of various measures of directed divergence. Adv Manag Stud 3:1–16

    Google Scholar 

  • Kumar S, Chaudhary A, Kumar R (2014) Some more results on a generalized parametric \(R\)-norm information measure of type \(\alpha \). J Appl Sci Eng 17(4):447–453

    Google Scholar 

  • Kapur JN (1997) Measures of fuzzy information. Mathematical Science Trust Society, New Delhi

    Google Scholar 

  • Kumar S, Garg D (2016) Parametric \(R\)-norm directed divergence convex function. Inf Dimens Anal Quant Prob Relat Top 19(2):1–12. https://doi.org/10.1142/S0219025716500144

  • Liu H, Wang G (2007) Multicriteria decision making methods based on intuitionistic fuzzy sets. Eur J Oper Res 179:220–223

    Article  MATH  Google Scholar 

  • Montes S, Couso I, Gil P, Bertoluzza C (2002) Divergence measure between fuzzy sets. Int J Approx Reason 30(2):91–105

    Article  MathSciNet  MATH  Google Scholar 

  • Mahalanobis PC (1936) On the generalized distance in statistics. Proc Natl Inst Sci 2:49–55

    MATH  Google Scholar 

  • Pardo L (1993) \(R^\phi _h\)-Divergence statistics in applied categorical data analysis with stratified sampling. Utilit Math 44:145–164

    Google Scholar 

  • Pal NR, Pal SR (1992) Higher order fuzzy entropy and hybrid entropy of a set. Inf Sci 61(3):211–231

    Article  MathSciNet  MATH  Google Scholar 

  • Poletti E, Zappelli F, Ruggeri A, Grisan E (2012) A review of thresholding strategies applied to human chromosome segmentation. Comput Method Progr Biomed 108:679–688

    Article  Google Scholar 

  • Renyi A (1961) On measures of entropy and information. In: Proceedings of 4th Barkley symposium on Mathematics and Statistics and Probability. University of California Press, vol 1, p 547

  • Rao CR (1982) Diversity and dissimilarity coefficients: a unified approach. Theor Popul Biol 21:24–43

    Article  MathSciNet  MATH  Google Scholar 

  • Shioya H, Da-te T (1995) A generalization of Lin divergence and the derivative of a new information divergence. Electron Commun Jpn 78:37–40

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Technol J 27(378–423):623–656

    Article  MathSciNet  MATH  Google Scholar 

  • Sharma BD, Mittal DP (1975) New non-additive measures of entropy for discrete probability distributions. J Math Sci (Calcutta) 10:28–40

    Google Scholar 

  • Shore JE, Gray RM (1982) Minimization cross-entropy pattern classification and cluster analysis. IEEE Trans Pattern Anal Mach Intell 4(1):11–17

    Article  MATH  Google Scholar 

  • Theil H (1967) Economics and information theory. North-Holland Publishing Co., Amesterdum

    Google Scholar 

  • Tomar VP, Ohlan A (2014) New parametric generalized exponential fuzzy divergence measure. J Uncertain Anal Appl. https://doi.org/10.1186/s40467-014-0024-2

  • Taneja IJ (1975) A study of generalized measures of information theory. Ph.D. Thesis, New Delhi

  • Aman U (1996) Entropy, divergence and distance measures with econometric applications. J Stat Plan Inf 49:137–162

    Article  MathSciNet  MATH  Google Scholar 

  • Vajda I (1989) Theory of statistical inference and information. Kluwer academics publishers, Dordrecht-Boston

    MATH  Google Scholar 

  • Yager RR (1979) On the measure of fuzziness and negation. Part 1: Membership in the unit interval. Int J Gen Syst 5:221–229

    Article  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:221–229

    Article  Google Scholar 

  • Zadeh LA (1968) Probability measures of fuzzy events. J Math Anal Appl 23:421–427

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Joshi.

Additional information

Communicated by Marcos Eduardo Valle.

Appendix: Proof of properties

Appendix: Proof of properties

Proof

Consider the sets

$$\begin{aligned} X_1=\{z_i \in X/\mu _P (z_i) \ge \mu _Q (z_i)\} \end{aligned}$$
(8.1)

and

$$\begin{aligned} X_2=\{z_i\in X/\mu _P (z_i)<\mu _Q (z_i)\}. \end{aligned}$$
(8.2)

Using the notations given in the ‘Preliminaries’ section, i.e., \(\square \)

In set \(X_1\),

$$\begin{aligned} P\cup Q&=\mathrm {Union~ of}~ P\quad \mathrm {and}\quad Q \Leftrightarrow \mu _ {P\cup Q} (z_i)=\max \{\mu _P (z_i), \mu _Q (z_i)\} =\mu _P (z_i),\nonumber \\ P\cap Q&= \mathrm {Intersection~ of}~ P\quad \mathrm {and}\quad Q \Leftrightarrow \mu _{P\cap Q} (z_i)=\min \{\mu _P (z_i),\mu _Q (z_i)\}=\mu _Q (z_i). \end{aligned}$$
(8.3)

In set \(X_2\),

$$\begin{aligned} P\cup Q&=\mathrm {Union~of}~P~\mathrm {and}~ Q \Leftrightarrow \mu _{P\cup Q} (z_i)=\max \{\mu _P (z_i), \mu _Q (z_i)\}=\mu _Q(z_i),\nonumber \\ P\cap Q&=\mathrm {Intersection~ of}~ P\mathrm {and}~ Q \Leftrightarrow \mu _{P\cap Q} (z_i)=\min \{\mu _P(z_i),\mu _Q (z_i)\}=\mu _P (z_i). \end{aligned}$$
(8.4)

(i) Consider

$$\begin{aligned}&I_{R'}^{S'} (P\cup Q, P)+I_{R'}^{S'} (P\cap Q, P) \nonumber \\&=\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _{P\cup Q} (z_i))^{S'}(\mu _P (z_i))^{1-S'}+(1-\mu _{P\cup Q}(z_i))^{S'}(1-\mu _P (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{P\cup Q} (z_i))^{R'}(\mu _P (z_i))^{1-R'}+(1-\mu _{P\cup Q}(z_i))^{R'}(1-\mu _P (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) \nonumber \\&\quad +\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _{P \cap Q} (z_i))^{S'}(\mu _P (z_i))^{1-S'}+(1-\mu _{P\cap Q} (z_i))^{S'} (1-\mu _P (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{P\cap Q} (z_i))^{R'}(\mu _P (z_i))^{1-R'}+(1-\mu _{P\cap Q} (z_i))^{R'} (1-\mu _P (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.5)

Dividing X into \(X_1\) and \(X_2\), we get

$$\begin{aligned} =\frac{R'\times S'}{n (S'-R')}\sum _{X_1} \left( \begin{array}{c} \left( (\mu _{P\cup Q} (z_i))^{S'}(\mu _P (z_i))^{1-S'}+(1-\mu _{P\cup Q}(z_i))^{S'}(1-\mu _P (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{P\cup Q} (z_i))^{R'}(\mu _P (z_i))^{1-R'}+(1-\mu _{P\cup Q} (z_i))^{R'}(1-\mu _P (z_i))^{1-R'}\right) ^\frac{1}{R'}\\ +\left( (\mu _{P \cap Q} (z_i))^{S'} (\mu _P (z_i))^{1-S'}+(1-\mu _{P\cap Q} (z_i))^{S'} (1-\mu _P (z_i))^{1-S'}\right) ^\frac{1}{S'}\nonumber \\ -\left( (\mu _{P\cap Q} (z_i))^{R'}(\mu _P (z_i))^{1-R'}+(1-\mu _{P\cap Q} (z_i))^{R'}(1-\mu _P (z_i))^{1-R'}\right) ^\frac{1}{R'}\nonumber \end{array} \right) \\ \quad +\frac{R'\times S'}{n (S'-R')}\sum _{X_2} \left( \begin{array}{c} \left( (\mu _{P\cup Q} (z_i))^{S'}(\mu _P (z_i))^{1-S'}+(1-\mu _{P\cup Q} (z_i))^{S'} (1-\mu _P (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{P\cup Q} (z_i))^{R'}(\mu _P (z_i))^{1-R'}+(1-\mu _{P \cup Q} (z_i))^{R'} (1-\mu _P (z_i))^{1-R'}\right) ^\frac{1}{R'}\\ +\left( (\mu _{P \cap Q} (z_i))^{S'}(\mu _P (z_i))^{1-S'}+(1-\mu _{P\cap Q} (z_i))^{S'} (1-\mu _P (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{P\cap Q} (z_i))^{R'} (\mu _P (z_i))^{1-R'}+(1-\mu _{P\cap Q} (z_i))^{R'} (1-\mu _P (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.6)

Using (8.3) and (8.4) and simplifying, we get

$$\begin{aligned}&I_{R'}^{S'}(P\cup Q, P)+I_{R'}^{S'} (P \cap Q, P) \nonumber \\&=\frac{R'\times S'}{n (S'-R')} \sum _{X_1} \left( \begin{array}{c} \left( (\mu _Q (z_i))^{S'}(\mu _P (z_i))^{1-S'}+(1-\mu _Q (z_i))^{S'}(1-\mu _P (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _Q (z_i))^{R'}(\mu _P (z_i))^{1-R'}+(1-\mu _Q (z_i))^{R'}(1-\mu _P (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) \nonumber \\&\quad +\frac{R'\times S'}{n (S'-R')}\sum _{X_2} \left( \begin{array}{c} \left( (\mu _Q (z_i))^{S'}(\mu _P (z_i))^{1-S'}+(1-\mu _Q (z_i))^{S'}(1-\mu _P (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _Q (z_i))^{R'}(\mu _P (z_i))^{1-R'}+(1-\mu _Q (z_i))^{R'}(1-\mu _P (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.7)

Therefore,

$$\begin{aligned}&I_{R'}^{S'} (P\cup Q, P)+I_{R'}^{S'} (P\cap Q, P) \nonumber \\&\quad =\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _Q (z_i))^{S'}(\mu _P (z_i))^{1-S'}+(1-\mu _Q (z_i))^{S'}(1-\mu _P (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _Q (z_i))^{R'}(\mu _P (z_i))^{1-R'}+(1-\mu _Q (z_i))^{R'}(1-\mu _P (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) \nonumber \\&\quad =I_{R'}^{S'} (Q, P). \end{aligned}$$
(8.8)

Hence, \(I_{R'}^{S'}(P\cup Q, P)+I_{R'}^{S'}(P \cap Q, P)=I_{R'}^{S'} (Q, P)\).

(ii) We have to prove \(I_{R'}^{S'} (P \cup Q, C)+I_{R'}^{S'} (P \cap Q, C)=I_{R'}^{S'} (P, C)+I_{R'}^{S'} (Q, C)\).

For this, consider

$$\begin{aligned}&I_{R'}^{S'} (P \cup Q, C)+I_{R'}^{S'} (P \cap Q, C) \nonumber \\&=\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _{P \cup Q} (z_i))^{S'}(\mu _C (z_i))^{1-S'}+(1-\mu _{P \cup Q}(z_i))^{S'}(1-\mu _C(z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{P\cup Q} (z_i))^{R'}(\mu _C (z_i))^{1-R'}+(1-\mu _{P \cup Q}(z_i))^{R'} (1-\mu _C (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) \nonumber \\&\quad +\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _{P \cap Q} (z_i))^{S'}(\mu _C (z_i))^{1-S'}+(1-\mu _{P \cap Q}(z_i))^{S'} (1-\mu _C (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{P\cap Q} (z_i))^{R'}(\mu _C (z_i))^{1-R'}+(1-\mu _{P \cap Q} (z_i))^{R'} (1-\mu _C (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.9)

Dividing X into \(X_1\) and \(X_2\), we get

$$\begin{aligned}&=\frac{R'\times S'}{n (S'-R')}\sum _{X_1} \left( \begin{array}{c} \left( (\mu _{P \cup Q} (z_i))^{S'}\mu _C (z_i)^{1-S'}+(1-\mu _{P \cup Q}(z_i))^{S'}(1-\mu _C (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{P\cup Q} (z_i))^{R'}(\mu _C (z_i))^{1-R'}+(1-\mu _{P\cup Q} (z_i))^{R'} (1-\mu _C (z_i))^{1-R'}\right) ^\frac{1}{R'}\\ +\left( (\mu _{P\cap Q} (z_i))^{S'}(\mu _C (z_i))^{1-S'}+(1-\mu _{P\cap Q} (z_i))^{S'} (1-\mu _C(z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{P\cap Q} (z_i))^{R'}(\mu _C (z_i))^{1-R'}+(1-\mu _{P \cap Q} (z_i))^{R'} (1-\mu _C (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) \nonumber \\&\quad +\frac{R'\times S'}{n (S'-R')}\sum _{X_2} \left( \begin{array}{c} \left( (\mu _{P\cup Q} (z_i))^{S'}(\mu _C (z_i))^{1-S'}+(1-\mu _{P \cup Q} (z_i))^{S'}(1-\mu _C (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{P \cup Q} (z_i))^{R'}(\mu _C (z_i))^{1-R'}+(1-\mu _{P \cup Q} (z_i))^{R'} (1-\mu _C (z_i))^{1-R'}\right) ^\frac{1}{R'}\\ +\left( (\mu _{P\cap Q} (z_i))^{S'}(\mu _C (z_i))^{1-S'}+(1-\mu _{P\cap Q} (z_i))^{S'} (1-\mu _C (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{P\cap Q} (z_i))^{R'}(\mu _C (z_i))^{1-R'}+(1-\mu _{P \cap Q} (z_i))^{R'}(1-\mu _C (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.10)

Using (8.3) and (8.4) and simplifying, we get

$$\begin{aligned}&I_{R'}^{S'} (P\cup Q, C)+I_{R'}^{S'} (P\cap Q, C) \nonumber \\&=\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _P (z_i))^{S'}(\mu _C (z_i))^{1-S'}+(1-\mu _P (z_i))^{S'}(1-\mu _C (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _P (z_i))^{R'}(\mu _C (z_i))^{1-R'}+(1-\mu _P (z_i))^{R'}(1-\mu _C (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) \nonumber \\&\quad +\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _P (z_i))^{S'}(\mu _C (z_i))^{1-S'}+(1-\mu _P (z_i))^{S'}(1-\mu _C (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _P (z_i))^{R'}(\mu _C (z_i))^{1-R'}+(1-\mu _P (z_i))^{R'}(1-\mu _C (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) , \end{aligned}$$
(8.11)

\(=I_{R'}^{S'} (P, C)+I_{R'}^{S'} (Q, C)\). Thus proved.

(iii) We have to prove that \(I_{R'}^{S'}\overline{(P\cup Q},\overline{P\cap Q)}=I_{R'}^{S'}(\bar{P}\cap \bar{Q}, \bar{P}\cup \bar{Q})\).

To prove this, consider

$$\begin{aligned}&I_{R'}^{S'}(\overline{P \cup Q}, \overline{P \cap Q}) \qquad \qquad \qquad \quad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \nonumber \\&\quad =\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _{\overline{P \cup Q}} (z_i))^{S'}(\mu _{\overline{P \cap Q}} (z_i))^{1-S'}+(1-\mu _{\overline{P \cup Q}} (z_i))^{S'} (1-\mu _{\overline{P\cap Q}} (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{\overline{P \cup Q}} (z_i))^{R'}(\mu _{\overline{P \cap Q}} (z_i))^{1-R'}+(1-\mu _{\overline{P \cup Q}} (z_i))^{R'}(1-\mu _{\overline{P \cap Q}} (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.12)

Using definition (3.2), we get

$$\begin{aligned} =\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (1-\mu _{P\cup Q} (z_i))^{S'}(1-\mu _{P \cap Q} (z_i))^{1-S'}+(\mu _{P \cup Q} (z_i))^{S'}(\mu _{P\cap Q} (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (1-\mu _{P\cup Q} (z_i))^{R'}(1-\mu _{P \cap Q} (z_i))^{1-R'}+(\mu _{P \cup Q} (z_i))^{R'}(\mu _{P\cap Q} (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.13)

Bifurcating X into \(X_1\) and \(X_2\) and applying (8.3) and (8.4), we get

$$\begin{aligned}&=\frac{R'\times S'}{n (S'-R')}\sum _{X_1} \left( \begin{array}{c} \left( (1-\mu _{P} (z_i))^{S'} (1-\mu _Q (z_i))^{1-S'}+(\mu _P (z_i))^{S'}(\mu _{Q} (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (1-\mu _{P} (z_i))^{R'}(1-\mu _{Q} (z_i))^{1-R'}+(\mu _P (z_i))^{R'}(\mu _Q (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) \nonumber \\&\quad +\frac{R'\times S'}{n (S'-R')}\sum _{X_2} \left( \begin{array}{c} \left( (1-\mu _{Q} (z_i))^{S'}(1-\mu _{P} (z_i))^{1-S'}+(\mu _{Q} (z_i))^{S'}(\mu _{P} (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (1-\mu _{Q} (z_i))^{R'}(1-\mu _{P} (z_i))^{1-R'}+(\mu _{Q} (z_i))^{R'}(\mu _{P} (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.14)

Now consider,

$$\begin{aligned}&I_{R'}^{S'}(\bar{P}\cap \bar{Q}, \bar{P}\cup \bar{Q}) \nonumber \\&\quad =\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _{\bar{P}\cap \bar{Q}} (z_i))^{S'}(\mu _{\bar{P}\cup \bar{Q}} (z_i))^{1-S'}+(1-\mu _{\bar{P}\cap \bar{Q}} (z_i))^{S'} (1-\mu _{\bar{P}\cup \bar{Q}} (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{\bar{P}\cap \bar{Q}} (z_i))^{R'}(\mu _{\bar{P}\cup \bar{Q}} (z_i))^{1-R'}+(1-\mu _{\bar{P}\cap \bar{Q}}(z_i))^{R'}(1-\mu _{\bar{P}\cup \bar{Q}} (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.15)

Dividing X into \(X_1\) and \(X_2\) and simplifying using (8.3) and (8.4), we get

$$\begin{aligned}&=\frac{R'\times S'}{n (S'-R')}\sum _{X_1} \left( \begin{array}{c} \left( (\mu _{\bar{P}} (z_i))^{S'}(\mu _{\bar{Q}} (z_i))^{1-S'}+(1-\mu _{\bar{P}}(z_i))^{S'}(1-\mu _{\bar{Q}} (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{\bar{P}} (z_i))^{R'}(\mu _{\bar{Q}} (z_i))^{1-R'}+(1-\mu _{\bar{P}} (z_i))^{R'} (1-\mu _{\bar{Q}} (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) \nonumber \\&\quad +\frac{R'\times S'}{n (S'-R')}\sum _{X_2} \left( \begin{array}{c} \left( (\mu _{\bar{Q}} (z_i))^{S'}(\mu _{\bar{P}} (z_i))^{1-S'}+(1-\mu _{\bar{Q}} (z_i))^{S'}(1-\mu _{\bar{P}}(z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{\bar{Q}} (z_i))^{R'}(\mu _{\bar{P}} (z_i))^{1-R'}+(1-\mu _{\bar{Q}} (z_i))^{R'}(1-\mu _{\bar{P}} (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.16)

Using definition (3.2), we get

$$\begin{aligned}&=\frac{R'\times S'}{n (S'-R')}\sum _{X_1} \left( \begin{array}{c} \left( (1-\mu _{P} (z_i))^{S'}(1-\mu _{Q} (z_i))^{1-S'}+(\mu _{P} (z_i))^{S'}(\mu _{Q} (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (1-\mu _{P} (z_i))^{R'} (1-\mu _{Q} (z_i))^{1-R'}+(\mu _{P} (z_i))^{R'}(\mu _{Q} (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) \nonumber \\&\quad +\frac{R'\times S'}{n (S'-R')}\sum _{X_2} \left( \begin{array}{c} \left( (1-\mu _{Q} (z_i))^{S'} (1-\mu _{P} (z_i))^{1-S'}+(\mu _{Q} (z_i))^{S'}(\mu _{P} (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (1-\mu _{Q} (z_i))^{R'} (1-\mu _{P} (z_i))^{1-R'}+(\mu _{Q} (z_i))^{R'}(\mu _{P} (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) , \end{aligned}$$
(8.17)

\(=I_{R'}^{S'}(\overline{P \cup Q}, \overline{P \cap Q})\).

Therefore, (iii) holds.

(iv) Consider

$$\begin{aligned}&I_{R'}^{S'} (P, \bar{P}) \nonumber \\&\quad =\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _P (z_i))^{S'}(\mu _{\bar{P}} (z_i))^{1-S'}+(1-\mu _P (z_i))^{S'}(1-\mu _{\bar{P}} (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _P (z_i))^{R'}(\mu _{\bar{P}} (z_i))^{1-R'}+(1-\mu _P (z_i))^{R'}(1-\mu _{\bar{P}} (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.18)

Using notations in definition (3.2), we get

$$\begin{aligned}&I_{R'}^{S'} (P, \bar{P}) \nonumber \\&\quad =\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (1-\mu _{\bar{P}} (z_i))^{S'} (1-\mu _P (z_i))^{1-S'}+(\mu _{\bar{P}} (z_i))^{S'}(\mu _P (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (1-\mu _{\bar{P}} (z_i))^{R'} (1-\mu _{P} (z_i))^{1-R'}+(\mu _{\bar{P}} (z_i))^{R'}(\mu _P (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) , \end{aligned}$$
(8.19)

\(=I_{R'}^{S'}(\bar{P}, P)\).

(v) Consider

$$\begin{aligned}&I_{R'}^{S'}(\bar{P}, \bar{Q}) \nonumber \\&\quad =\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _{\bar{P}} (z_i))^{S'}(\mu _{\bar{Q}} (z_i))^{1-S'}+(1-\mu _{\bar{P}}(z_i))^{S'} (1-\mu _{\bar{Q}} (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _{\bar{P}} (z_i))^{R'}(\mu _{\bar{Q}} (z_i))^{1-R'}+(1-\mu _{\bar{P}} (z_i))^{R'}(1-\mu _{\bar{Q}} (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.20)

Using notations in definition (3.2) and simplifying, we get

$$\begin{aligned} =\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _P (z_i))^{S'}(\mu _Q (z_i))^{1-S'}+(1-\mu _{P} (z_i))^{S'}(1-\mu _Q (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _P (z_i))^{R'}(\mu _Q (z_i))^{1-R'}+(1-\mu _P (z_i))^{R'}(1-\mu _Q (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) , \end{aligned}$$
(8.21)

\(=I_{R'}^{S'} (P, Q)\).

(vi) Consider

$$\begin{aligned}&I_{R'}^{S'}(P, \bar{Q}) \nonumber \\&\quad =\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (\mu _P (z_i))^{S'}(\mu _{\bar{Q}} (z_i))^{1-S'}+(1-\mu _{P}(z_i))^{S'}(1-\mu _{\bar{Q}} (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (\mu _P (z_i))^{R'}(\mu _{\bar{Q}} (z_i))^{1-R'}+(1-\mu _P (z_i))^{R'} (1-\mu _{\bar{Q}} (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) . \end{aligned}$$
(8.22)

Using notations in definition (3.2) and simplifying, we get

$$\begin{aligned} =\frac{R'\times S'}{n (S'-R')}\sum _{i=1}^n \left( \begin{array}{c} \left( (1-\mu _{\bar{P}} (z_i))^{S'} (1-\mu _{Q} (z_i))^{1-S'}+(\mu _{\bar{P}} (z_i))^{S'}(\mu _Q (z_i))^{1-S'}\right) ^\frac{1}{S'}\\ -\left( (1-\mu _{\bar{P}}(z_i))^{R'}(1-\mu _Q (z_i))^{1-R'}+(\mu _{\bar{P}} (z_i))^{R'}(\mu _Q (z_i))^{1-R'}\right) ^\frac{1}{R'} \end{array} \right) , \end{aligned}$$
(8.23)

\(=I_{R'}^{S'}(\bar{P}, Q)\).

(vii) It follows directly from (b) and (c).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R., Kumar, S. An \((R',S')\)-norm fuzzy relative information measure and its applications in strategic decision-making. Comp. Appl. Math. 37, 4518–4543 (2018). https://doi.org/10.1007/s40314-018-0582-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0582-x

Keywords

Mathematics Subject Classification

Navigation