Skip to main content
Log in

An intuitionistic fuzzy \((\delta , \gamma )\)-norm entropy with its application in supplier selection problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this communication, based on the concept of \((\delta , \gamma )\)-norm entropy, an \((\delta , \gamma )\)-norm intuitionistic fuzzy entropy measure is introduced in the settings of intuitionistic fuzzy set theory. Some of its major properties are also proved. The performance of the proposed entropy measure is demonstrated using numerical examples. Based on the proposed intuitionistic fuzzy (IF) entropy, a new multiple-attribute decision-making method (MADM) considering the merits of subjective and objective weights has been introduced. Two methods of finding the weights of attributes are discussed. The proposed MADM method is effectively explained with the help of supplier selection example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  Google Scholar 

  • Atanassov KT, Gargov G (1989) Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst 31(3):343–349

    Article  MathSciNet  Google Scholar 

  • Aczel J, Daroczy Z (1975) On measures of information and their characterization. Academic Press, New York

    MATH  Google Scholar 

  • Burillo P, Bustince H (2001) Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst 118:305–316

    MathSciNet  MATH  Google Scholar 

  • Boekee DE, Vander Lubbe JCA (1980) The R-norm information measure. Inf Control 45:136–155

    Article  MathSciNet  Google Scholar 

  • Boran FE, Genc S, Akay D (2011) Personnel selection based on intuitionistic fuzzy sets. Hum Factors Ergon Manuf Serv Ind 21:493–503

    Article  Google Scholar 

  • Chen T, Li C (2010) Determining objective weights with intuitionistic fuzzy entropy measures: a comparative analysis. Inf Sci 180:4207–4222

    Article  Google Scholar 

  • Chu ATW, Kalaba RE, Spingarn K (1979) A comparison of two methods for determining the weights of belonging to fuzzy sets. J Optimiz Theor App 27:531–538

    Article  MathSciNet  Google Scholar 

  • Choo EU, Wedley WC (1985) Optimal criterion weights in repetitive multicriteria decision making. J Oper Res Soc 36:983–992

    Article  Google Scholar 

  • De Luca A, Termini S (1972) A definition of non-probabilistic entropy in the setting of fuzzy set theory. Inf Control 20:301–312

    Article  Google Scholar 

  • De SK, Biswas R, Roy AR (2000) Some operations on intuitionistic fuzzy sets. Fuzzy Sets Syst 114:477–484

    Article  MathSciNet  Google Scholar 

  • Fan ZP (1996) Complicated multiple attribute decision making: theory and applications. Ph.D. Dissertation, Northeastern university, Shenyang, China

  • Hung WL, Yang MS (2006) Fuzzy entropy on intuitionistic fuzzy sets. Int J Intell Syst 21(4):443–451

    Article  Google Scholar 

  • Hooda DS (2004) On generalized measures of fuzzy entropy. Mathematica Slovaca 54:315–325

    MathSciNet  MATH  Google Scholar 

  • Hwang CL, Lin MJ (1987) Group decision making under multiple criteria: methods and applications. Springer, Berlin

    Book  Google Scholar 

  • Hung W (2003) A note on entropy of intuitionistic fuzzy sets. Int J Uncertain Fuzziness Knowl Based Syst 11(5):627–633

    Article  MathSciNet  Google Scholar 

  • Hwang CM, Yang MS (2008) On entropy of fuzzy sets. Int J Uncertain Fuzziness Knowl Based Syst 16(4):519–527

    Article  MathSciNet  Google Scholar 

  • Joshi R, Kumar S (2017) An \((R, S)\)-norm fuzzy information measure with its applications in multiple attribute decision making. Computational and applied mathematics. https://doi.org/10.1007/s40314-017-0491-4

  • Joshi R, Kumar S (2016) \((R, S)\)-norm information measure and a relation between coding and questionnaire theory. Open Syst Inf Dyn 23(3):1–12

    Article  MathSciNet  Google Scholar 

  • Joshi R, Kumar S (2017b) Parametric \((R, S)\)-norm entropy on intuitionistic fuzzy sets with a new approach in multiple attribute decision making. Fuzzy Inf Eng 9:181–203

    Article  MathSciNet  Google Scholar 

  • Kim SH, Choi SH, Kim IK (1999) An interactive procedure for multiple attribute decision making with incomplete information: range based approach. Eur J Oper Res 118:139–152

    Article  Google Scholar 

  • Liu M, Ren H (2014) A new intuitionistic fuzzy entropy and application in multi-attribute decision-making. Information 5:587–601

    Article  Google Scholar 

  • Mao J, Yao D, Wang C (2013) A novel cross-entropy and entropy measures of IFSs and their applications. Knowl Based Syst 48:37–45

    Article  Google Scholar 

  • Opricovic S (1998) Multi-criteria optimization of civil engineering systems. Ph.D. Thesis, University of Belgrade, Belgrade, Serbia

  • Pal NR, Bustince H, Pagola M, Mukherjee U, Goswami D, Beliakov G (2013) Uncertainties with Atanassov’s intuitionistic fuzzy sets: fuzziness and lack of knowledge. Inf Sci 228:61–74

    Article  MathSciNet  Google Scholar 

  • Szmidt E, Kacprzyk J (2002) Using intuitionistic fuzzy sets in group decision-making. Control Cybern 31:1037–1054

    MATH  Google Scholar 

  • Shannon CE (1948) The mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    Article  MathSciNet  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw Hill, New York

    MATH  Google Scholar 

  • Szmidt E, Kacprzyk J (2001) Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst 118(3):467–477

    Article  MathSciNet  Google Scholar 

  • Taneja IJ (1975) A study of generalized measures of information theory. Ph.D. Thesis, New Delhi

  • Vlachos IK, Sergiadis GD (2007) Intuitionistic fuzzy information—applications to pattern recognition. Pattern Recognit Lett 28:197–206

    Article  Google Scholar 

  • Verma R, Sharma BD (2014) On intuitionistic fuzzy entropy of order-\(\alpha \). Adv Fuzzy Syst 2014:1–8 (Article ID 789890)

    Article  MathSciNet  Google Scholar 

  • Wang J, Wang P (2012) Intuitionistic linguistic fuzzy multi-critria decision-making method based on intuitionistic fuzzy entropy. Control Decis 27:1694–1698

    MathSciNet  Google Scholar 

  • Wang W, Xin X (2005) Distance measure between intuitionistic fuzzy sets. Pattern Recognit Lett 26:2063–2069

    Article  Google Scholar 

  • Xia M, Xu Z (2012) Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment. Inf Fusion 13:31–47

    Article  Google Scholar 

  • Xu ZS (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15:1179–1187

    Article  Google Scholar 

  • Xu ZS, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433

    Article  MathSciNet  Google Scholar 

  • Yazdani M, Chatterjee P, Zavadskas EK, Hashemkhani Zolfani S (2016a) Integrated QFD-MCDM framework for green supplier selection. J Clean Prod 142:3728–3740

    Article  Google Scholar 

  • Yazdani M, Hashemkhani Zolfani S, Zavadskas EK (2016b) New integration of MCDM methods and QFD in the selection of green suppliers. J Bus Econ Manag 17:1097–1113

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  • Zhang H, Zhang W, Mei C (2009) Entropy on interval-valued fuzzy sets based on distance and its relationship with similarity measure. Knowl Based Syst 22(6):449–454

    Article  Google Scholar 

  • Zeng W, Yu F, Yu X, Chen H, Wu S (2009) Entropy on intuitionistic fuzzy set based on similarity measure. Int J Innovative Comput Inf Control 5(12):4737–4744

    Google Scholar 

  • Zhao N, Xu Z, Liu F (2015) Uncertainty measures for hesitant fuzzy information. Int J Intell Syst 00:1–19

    Google Scholar 

  • Zhao N, Xu Z (2016) Entropy measures for interval-valued intuitionistic fuzzy information from a comparative perspective and their application to decision making. Informatica 27(1):203–228

    Article  Google Scholar 

  • Zadeh LA (1975) The concept of linguistic variable and its application to approximate reasoning-I. Inf Sci 8:199–249

    Article  MathSciNet  Google Scholar 

  • Zhao J, Xiao-Yue You, Hu-Chen Liu, Song-Man Wu (2017) An extended VIKOR method using intuitionistic fuzzy sets and combination weights for supplier selection. Symmetry. https://doi.org/10.3390/sym9090169

Download references

Acknowledgements

The authors are thankful to anonymous reviewers for their valuable suggestions and comments which enhanced our knowledge and improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Joshi.

Additional information

Communicated by Anibal Tavares de Azevedo.

Appendix: proofs of properties

Appendix: proofs of properties

Proof of Theorem 3.2

Bifurcate \(X=\{q_1, q_2, \ldots , q_n\}\) into two parts \(X_1\) and \(X_2\), such that

$$\begin{aligned} X_1=\{q_i\in X:J\subseteq K\},\quad X_2=\{q_i\in X: J\supseteq K\}. \end{aligned}$$
(7.1)

This implies that for all \(q_i\in X_1\),

$$\begin{aligned} \mu _J (q_i)\le \mu _K (q_i),\quad \nu _J (q_i)\ge \nu _K (q_i), \end{aligned}$$
(7.2)

and for all \(q_i\in X_2\),

$$\begin{aligned} \mu _J (q_i)\ge \mu _K (q_i),\quad \nu _J (q_i)\le \nu _K (q_i). \end{aligned}$$
(7.3)

Using (3.5), we have

$$\begin{aligned}&E_\delta ^\gamma (J\cup K) =\frac{1}{n\left( 2^\frac{1-\delta }{\delta } -2^\frac{1-\gamma }{\gamma }\right) } \nonumber \\&\qquad \sum _{i=1}^n\Bigg \{\Big [(\mu _{J\cup K} (q_i)^\delta +\nu _{J\cup K} (q_i)^\delta )\times (\mu _{J\cup K} (q_i)+\nu _{J\cup K} (q_i))^{1-\delta }+2^{1-\delta }\pi _{J\cup K} (q_i)\Big ]^\frac{1}{\delta }\nonumber \\&\qquad -\Big [(\mu _{J\cup K} (q_i)^\gamma +\nu _{J\cup K} (q_i)^\gamma )\times (\mu _{J\cup K} (q_i)+\nu _{J\cup K} (q_i))^{1-\gamma }+2^{1-\gamma }\pi _{J\cup K} (q_i)\Big ]^\frac{1}{\gamma }\Bigg \};\nonumber \\&\quad =\frac{1}{n\left( 2^\frac{1-\delta }{\delta }-2^\frac{1-\gamma }{\gamma }\right) } \nonumber \\&\qquad \Bigg \{\sum _{X_1}\Bigg (\Big [(\mu _K (q_i)^\delta +\nu _K (q_i)^\delta )\times (\mu _K (q_i)+\nu _K (q_i))^{1-\delta }+2^{1-\delta }\pi _K (q_i)\Big ]^\frac{1}{\delta }\nonumber \\&\qquad -\Big [(\mu _K (q_i)^\gamma +\nu _K (q_i)^\gamma )\times (\mu _K (q_i)+\nu _K (q_i))^{1-\gamma }+2^{1-\gamma }\pi _K (q_i)\Big ]^\frac{1}{\gamma }\Bigg )\nonumber \\&\qquad +\sum _{X_2}\Bigg (\Big [(\mu _J (q_i)^\delta +\nu _J (q_i)^\delta )\times (\mu _J (q_i)+\nu _J (q_i))^{1-\delta }+2^{1-\delta }\pi _J (q_i)\Big ]^\frac{1}{\delta }\nonumber \\&\qquad -\Big [(\mu _J (q_i)^\gamma +\nu _J (q_i)^\gamma )\times (\mu _J (q_i)+\nu _J (q_i))^{1-\gamma }+2^{1-\gamma }\pi _J (q_i)\Big ]^\frac{1}{\gamma }\Bigg )\Bigg \}. \end{aligned}$$
(7.4)

Similarly,

$$\begin{aligned} E_\delta ^\gamma (J\cap K)&=\frac{1}{n\left( 2^\frac{1-\delta }{\delta } -2^\frac{1-\gamma }{\gamma }\right) }\nonumber \\&\quad \Bigg \{\sum _{X_1}\Bigg (\Big [(\mu _J (q_i)^\delta +\nu _J (q_i)^\delta )\times (\mu _J (q_i)+\nu _J (q_i))^{1-\delta }+2^{1-\delta }\pi _J (q_i)\Big ]^\frac{1}{\delta }\nonumber \\&\quad -\Big [(\mu _J (q_i)^\gamma +\nu _J (q_i)^\gamma )\times (\mu _J (q_i)+\nu _J (q_i))^{1-\gamma }+2^{1-\gamma }\pi _J (q_i)\Big ]^\frac{1}{\gamma }\Bigg )\nonumber \\&\quad +\sum _{X_2}\Bigg (\Big [(\mu _K (q_i)^\delta +\nu _K (q_i)^\delta )\times (\mu _K (q_i)+\nu _K (q_i))^{1-\delta }+2^{1-\delta }\pi _K (q_i)\Big ]^\frac{1}{\delta }\nonumber \\&\quad -\Big [(\mu _K (q_i)^\gamma +\nu _K (q_i)^\gamma )\times (\mu _K (q_i)+\nu _K (q_i))^{1-\gamma }+2^{1-\gamma }\pi _K (q_i)\Big ]^\frac{1}{\gamma }\Bigg )\Bigg \}. \end{aligned}$$
(7.5)

From (7.4) and (7.5),

$$\begin{aligned} E_\delta ^\gamma (J\cup K)+E_\delta ^\gamma (J\cap K)=E_\delta ^\gamma (J)+E_\delta ^\gamma (K). \end{aligned}$$
(7.6)

This proves the theorem. \(\square \)

Proof of Theorem 3.3

Proof of Theorem 3.3 follows directly from the proofs of Properties E1 and E2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R., Kumar, S. An intuitionistic fuzzy \((\delta , \gamma )\)-norm entropy with its application in supplier selection problem. Comp. Appl. Math. 37, 5624–5649 (2018). https://doi.org/10.1007/s40314-018-0656-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0656-9

Keywords

Mathematics Subject Classifications

Navigation