Skip to main content
Log in

Data-driven reduced order modeling based on tensor decompositions and its application to air-wall heat transfer in buildings

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

This paper deals with the data-driven reduced order modeling of high dimensional systems, using a tensor decomposition plus one-dimensional interpolation. The (many) involved dimensions are usually associated with space, and/or time, and/or various parameters the system may depend on. Three tensor decomposition methods are considered, namely recursive proper orthogonal decomposition, higher order singular value decomposition, and proper generalized decomposition. The former method exhibits a well-established mathematical foundation (namely, rigorous error estimates have been obtained) in the continuous limit, while rigorous error estimates for the remaining two decompositions are available in the discrete case only. The data-driven ROM is first described and its combination with each of the three tensor decompositions is evaluated using a toy model tensor. In addition, application is made to the real-time simulation of air-wall heat transfer in buildings. In this application, the performance of the data-driven ROM is compared with that of a typical empirical model, as well as with radial basis function interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alonso, D., Vega, J.M., Velazquez, A.: Reduced-order model for viscous aerodynamic flow past an airfoil. AIAA J. 48, 1946–1958 (2010)

    Google Scholar 

  2. Alonso, D., Vega, J.M., Velazquez, A., de Pablo, V.: Reduced order modeling of three dimensional external aerodynamic flows. J. Aerosp. Eng. 25, 588–599 (2012)

    Google Scholar 

  3. Antoulas, A.C., Sorensen, D.C., Gugercin, S.A.: A survey of model reduction methods for large scale systems. Contemp. Math. 280, 193–219 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Astrid, P., Weiland, S., Willcox, K., Backx, T.: Missing point estimation methods in models described by proper orthogonal decomposition. IEEE Trans. Autom. Control 53, 2237–2250 (2008)

    MATH  Google Scholar 

  5. Awbi, H.B.: Calculation of convective heat transfer coefficients of room surfaces for natural convection. Energy Build. 28, 219–227 (1998)

    Google Scholar 

  6. Azaïez, M., Chacón Rebollo, T., Perracchione, E., Vega, J.M.: Recursive POD expansion for the advection-diffusion-reaction equation. Commun. Comput. Phys. 24, 1556–1578 (2018). https://doi.org/10.4208/cicp.OA-2017-0257

    Article  MathSciNet  Google Scholar 

  7. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C.R. Math. Acad. Sci. Paris 339, 667–672 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)

    MathSciNet  Google Scholar 

  10. Bui-Thanh, T.: Proper Orthogonal Decomposition. Extensions and Their Applications in Steady Aerodynamics. Master Thesis, Singapore-MIT Alliance (2003)

  11. Bui-Thanh, T., Damodaran, M., Willcox, K.: Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J. 42, 1505–1516 (2004)

    Google Scholar 

  12. Cardoso, M.A.: Development and application of reduced-order modeling procedures for reservoir simulation, Ph.D. Thesis, Stanford University 8 (2009)

  13. Cavoretto, R.: A numerical algorithm for multidimensional modeling of scattered data points. Comput. Appl. Math. 34, 65–80 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78, 808–817 (2000)

    Google Scholar 

  15. Chaturantbut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32, 2737–2764 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Chinesta, F., Ammar, A., Leygue, A., Keunings, R.: An overview of the proper generalized decomposition with applications in computational rheology. J. Non-Newtonian Fluid Mech. 166, 578–592 (2011)

    MATH  Google Scholar 

  17. Costantini, R., Sbaiz, L., Süsstrunk, S.: Higher order SVD analysis for dynamic texture synthesis. IEEE Trans. Image Process. 17, 42–52 (2008)

    MathSciNet  Google Scholar 

  18. da Silva, V., Lim, L.H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30, 1084–1127 (2008)

    MathSciNet  MATH  Google Scholar 

  19. De Lathawer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R_1, R_2, \ldots, R_N) approximation of higher-order tensors. SIAM J. Matrix. Anal. Appl. 21, 1324–1342 (2000)

    MathSciNet  MATH  Google Scholar 

  20. De Lathawer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix. Anal. Appl. 21, 1253–1278 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Foias, C., Sell, G.R., Temam, R.: Inertial manifolds for nonlinear evolution equations. J. Differ. Equ. 73, 309–353 (1988)

    MATH  Google Scholar 

  22. Gao, C., Zhang, W., Kou, J., Liu, Y., Ye, Z.: Active control of transonic buffet flow. J. Fluid Mech. 824, 312–351 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  24. Hagishima, A., Tanimoto, J.: Field measurements for estimating the convective heat transfer coefficient at building surfaces. Build. Environ. 38, 873–881 (2003)

    Google Scholar 

  25. Hesthaven, J., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer, Berlin (2016)

    MATH  Google Scholar 

  26. Heyberger, C., Boucard, P.A., Néron, D.: Multiparametric analysis within the proper generalized decomposition framework. Comput. Mech. 49, 277–289 (2012)

    MATH  Google Scholar 

  27. Jolliffe, I.T.: Principal Component Analysis. Springer, Berlin (1986)

    MATH  Google Scholar 

  28. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Koopman, B.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. USA 17, 315–318 (1931)

    MATH  Google Scholar 

  30. Le Clainche, S., Varas, F., Vega, J.M.: Accelerating reservoir simulations using POD on the fly. Int. J. Numer. Methods Eng. 110, 79–100 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Le Clainche, S., Vega, J.M.: Higher order dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 16, 882–925 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Loève, M.M.: Probability Theory. Van Nostrand, New York (1988)

    MATH  Google Scholar 

  33. Lorente, L.S., Vega, J.M., Velazquez, A.: Generation of aerodynamics databases using high-order singular value decomposition. J. Aircr. 45, 1779–1788 (2008)

    Google Scholar 

  34. Lorente, L.S., Vega, J.M., Velazquez, A.: Compression of aerodynamic databases using high-order singular value decomposition. Aerosp. Sci. Technol. 14, 168–177 (2010)

    Google Scholar 

  35. Lucia, D.J., Beran, P.S., Silva, W.A.: Reduced-order modelling: new approaches for computations physics. Prog. Aerosp. Sci. 40, 51–117 (2004)

    Google Scholar 

  36. Masoudi, R., Uchida, T., McPhee, J.: Reduction of multibody dynamic models in automotive systems using the proper orthogonal decomposition. J. Comput. Nonlinear Dyn. 10, 03107 (2015)

    Google Scholar 

  37. Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. 209, 415–446 (1909)

    MATH  Google Scholar 

  38. Mullen, D.T., Keane, M.M., Geron, M., Monaghan, R.F.D.: Automatic extraction of reduced-order models from CFD simulations for building energy modelling. Energy Build. 99, 313–326 (2015)

    Google Scholar 

  39. Müller, M.: On the POD method: an abstract investigation with applications to reduced-order modeling and suboptimal control, PhD thesis. Georg-August Universität, Göttingen (2008)

  40. Obyn, S., van Moeseke, G.: Variability and impact of internal surfaces convective heat transfer coefficients in the thermal evaluation of office buildings. Appl. Therm. Eng. 87, 258–272 (2015)

    Google Scholar 

  41. Omberg, L., Golub, G., Alter, O.: A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies. Proc. Natl. Acad. Sci. USA 104, 18371–18376 (2007)

    Google Scholar 

  42. Park, K.H., Jun, S.O., Baek, S.M., Cho, M.H., Yee, K.J., Lee, D.H.: Reduced-order model with an artificial neural network for aerostructural design optimization. J. Aircr. 50, 1106–1116 (2013)

    Google Scholar 

  43. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2, 559–572 (1901)

    MATH  Google Scholar 

  44. Perracchione, E.: RBF-based tensor decomposition with applications to oenology. Dolomites Res. Notes Approx. 13, 36–46 (2020)

    MathSciNet  Google Scholar 

  45. Quarteroni, A., Rozza, G. (eds.): Reduced Order Methods for Modeling and Computational Reduction. Springer (2014)

  46. Rapun, M.L., Terragni, F., Vega, J.M.: Adaptive POD-based low dimensional modeling supported by residual estimates. Int. J. Numer. Methods Eng. 104, 844–868 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Rapun, M.L., Terragni, F., Vega, J.M.: LUPOD: collocation in POD via LU decomposition. J. Comput. Phys. 335, 1–20 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Rincón Casado, A.: Modelización CFD para el Cálculo de los Coeficientes de Película Convectivos en el Interior de Espacios. Desarrollo de Modelos Orientados a la Integración en Programas de Simulación Térmica de Edificios, PhD thesis. Universidad de Cádiz, Cádiz (2014)

  49. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Sirovich, L.: Turbulence and the dynamics of coherent structures, pp. 561–590. XLV, Quart. Appl. Math. (1987)

  51. Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab v2.0, Available online, January 2014. http://www.tensorlab.net/

  52. Torrez, S.M., Driscoll, J.F., Ihme, M., Fotia, M.L.: Reduced-order modeling of turbulent reacting flows with application to ramjets and scramjets. J. Propuls. Power 27, 371–382 (2011)

    Google Scholar 

  53. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psikometrica 31, 279–311 (1966)

    MathSciNet  Google Scholar 

  54. Vannieuwenhoven, N., Vandebril, R., Meerbergen, K.: A new truncation strategy for the higher-order singular value decomposition. SIAM J. Sci. Comput. 34, A1027–A1052 (2012)

    MathSciNet  MATH  Google Scholar 

  55. Vega, J.M., Le Clainche, S.: Higher Order Dynamic Mode Decomposition and its Applications. Academic Press, London (2021)

    MATH  Google Scholar 

  56. Wendland, H.: Scattered data approximation, Cambridge Monogr. Appl. Comput. Math., vol. 17. Cambridge Univ. Press (2005)

Download references

Acknowledgements

This research has been partially supported by the Spanish AEI–Feder Fund, under Grant RTI2018-093521-B-C31 (MA and MGM), Junta de Andalucia-Feder Fund, under Grant US-1254587 (TCR), the European Union Horizon 2020 Program, under the Marie Sklodowska-Curie agreement 872442-ARIA (MA and TCR), ASI-INAF, under Grant AI-FLARES (EP), and the Spanish Ministry of Science, Innovation, and Universities, under Grant TRA2016-75075-R (JMV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Chacón Rebollo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azaïez, M., Chacón Rebollo, T., Gómez Mármol, M. et al. Data-driven reduced order modeling based on tensor decompositions and its application to air-wall heat transfer in buildings. SeMA 78, 213–232 (2021). https://doi.org/10.1007/s40324-021-00252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-021-00252-3

Keywords

Mathematics Subject Classification

Navigation