Skip to main content
Log in

Automatic control of a ROV for inspection of underwater structures using a low-cost sensing

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This work deals with the implementation of a position and orientation automatic control of an underwater vehicle to perform inspection tasks of submerged structures without using the knowledge of a previous dynamic model in the control law and, mainly, by using a low-cost embedded minimal instrumentation. This instrumentation does not employ expensive components to determine the position and orientation of the vehicle, like a central inertial. In this way, a computer vision system is used as a sensory source in order to assist the control. It was developed an algorithm to image processing and a system for integrating the different sensors. Experimental results using the proposed sensing show that the closed-loop control of the vehicle was suitable for the conduction of inspections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

e :

Error signal sampled

f :

Focal distance

Z :

Distance between target and the camera

k :

Distance between the lens and the focal point

Ki :

Integral gain

Kd :

Derivative gain

Kp :

Proportional gain

N :

Number of elements in the forgetting window

u :

Control action

Width :

Width of the target

px:

Relative to the image pixels

s:

Relative to the surge motion controller

tgt:

Relative to the target

y:

Relative to the yaw motion controller

1:

Relative to the first parameters of the camera

2:

Relative to the second parameters of the camera

References

  1. Aguilar LLP (2007) Controle inteligente para a navegação de veículos submarinos semi-autônomos. M.S. thesis, Dept. Eng., Polytechnic School of Univ. of São Paulo, São Paulo, Brazil (in Portuguese)

  2. Akçakaya H, Yildiz HA, Sağlam G, Gürleyen F (2009) Sliding mode control of autonomous underwater vehicle. In: Int Conf Elect and Electron Eng, Bursa, Turkey

  3. Akkizidis IS, Roberts GN, Ridao P, Batlle J (2003) Designing a fuzzy-like PD controller for an underwater robot. Control Eng Pract 11:471–480

    Article  Google Scholar 

  4. Analog Devices Inc (2010) ADXRS610: ±300°/sec Yaw Rate Gyro. Norwood, MA

  5. Asif M, Arshad MR, Yahya A (2006) An active contour for underwater target tracking and navigation. In: Proc Int Conf Man-Machine Syst, Langkawi, Malaysia

  6. Avila JPJ (2008) Modelagem e identificação de parâmetros hidrodinâmicos de um veículo submarino. Ph.D. thesis, Dept. Mech. Eng., Univ. of São Paulo, São Paulo, Brazil (in Portuguese)

  7. Bagheri A, Amanifard N, Karimi T, Farahani MH, Besarati SM (2006) Adaptive neural network control of an underwater remotely operated vehicle (ROV). In: Proc 10th WSEAS Int Conf Comput Athens, Greece, pp 614–619

  8. Bouguet J-Y (2011) Camera Calibration Toolbox for Matlab. California Institute of Technology, Pasadena, CA. [Online]. http://www.vision.caltech.edu/bouguetj/calib_doc

  9. Bradski G, Kaehler A (2008) Learning OpenCV: Computer Vision with the OpenCV Library”, Ed. O’Reilly Media, New York

  10. Buscariollo PH (2008) Sistema de posicionamento dinâmico baseado em visão computacional e laser. Ph.D. thesis, Dept. Eng., Polytechnic School of Univ. of São Paulo, São Paulo, Brazil (in Portuguese)

  11. Calvo O, Sousa A, Bibiloni J, Curti H, Acosta G, Rozenfeld A (2009) Low-cost autonomous underwater vehicle for underwater acoustic inspections. J Marit Res 6(2):37–52

    Google Scholar 

  12. Camerini C, Freitas M, Langer RA, Weid JP, Marnet R (2010) Autonomous underwater riser inspection tool. In: Proc 8th Int Pipeline Conf, Calgary, Canada, pp 1–7

  13. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  14. Carneiro RF, Leite AC, Peixoto AJ, Goulart C, Costa RR, Lizarralde F, Hsu L (2006) Underwater robot for tunnel inspection: design and control. In: Proc 12th Latin-American Congr on Automatic Control, Salvador, Brazil

  15. Centeno ML (2007) ROVFURG-II: Projeto e construção de um veículo subaquático não tripulado de baixo custo. M.S. thesis, Dept. Ocean Eng., Univ. Federal of Rio Grande, Rio Grande, Brazil (in Portuguese)

  16. da Gomes SS, Zeilmann AP, de Terres MASM, Soares LB, Gomes SCP (2010) Controle de um veículo subaquático baseado em estrutura variável. In: 4th Seminar and workshop on ocean eng, Rio Grande, Brazil (in Portuguese)

  17. de Barros EA (1994) A cooperative control system and its application to the collision avoidance guidance of autonomous underwater vehicles. Ph.D. thesis, Univ. of Tokyo, Tokyo, Japan

  18. de Barros EA, Soares FJA (2002) Desenvolvimento de um Robô Submarino de Baixo Custo. In: 14th Brazilian Congr. of Automatic, Natal, Brazil, pp 2121–2126 (in Portuguese)

  19. de Barros EA, Dantas JD, Freire LO, Zanoni FD, Oliveira LM, Vale RTS (2011) New aspects in the Pirajuba AUV Project. In: 21st Brazilian Congr of Mech Eng, Natal, Brazil

  20. de Prado AA (2009) Metodologia experimental para obtenção dos parâmetros hidrodinâmicos do VSNT JAÚ II, baseado em processamento digital de imagens. M.S. thesis, Dept. Eng., Polytechnic School of Univ. of São Paulo, São Paulo, Brazil (in Portuguese)

  21. do Lima JPSM, da Silva D, Teichrieb V, Kelner J (2008) Reconhecimento de padrões em tempo real utilizando a biblioteca OpenCV. In: 5th Workshop virtual and augmented reality, Bauru, Brazil (in Portuguese)

  22. Duda RO, Hart PE (1972) Use of the hough transformation to detect lines and curves in pictures. Commun ACM 15(1):11–15

    Article  MATH  Google Scholar 

  23. Fossen TI (1994) Guidance and control of ocean vehicles. Wiley, Chichester

    Google Scholar 

  24. Freescale Semiconductor Inc (2009) Integrated silicon pressure sensor on-chip signal conditioned, temperature compensated and calibrated: MPX4250 Series, 7th edn, Tempe, AZ

  25. Gomes SCP, Bier CC (1998) Estudo sobre trajetórias de controle para robôs manipuladores. In: 12th Brazilian Congr. of Automatic, Uberlândia, Brazil (in Portuguese)

  26. Guo J, Chiu F-C, Huang C-C (2003) Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. IEEE J Ocean Eng 30:2137–2155

    Article  Google Scholar 

  27. Jordan MA, Berger C, Bustamante JL (2011) Design of a vision-based sensor of position and rate for the guidance of autonomous underwater vehicles. Argentine Institute of Oceanography, Bahía Blanca, Argentina. [Online]. http://www.iado-conicet.gob.ar/archivos/Vision-Based-Sensor.pdf

  28. Karras GC, Loizou SG, Kyriakopoulos KJ (2011) Towards semi-autonomous operation of under-actuated underwater vehicles: sensor fusion, on-line identification and visual servo control. Auton Robots 31:67–86

    Article  Google Scholar 

  29. Küçük K (2007) Modeling and motion Simulation of an Underwater Vehicle. M.S. thesis, Dept. Mech. Eng., Middle East Technical Univ., Ankara, Turkey

  30. Kuhn VN (2005) Desenvolvimento de um sistema microcontrolado para implementação do modo teach em um robô: hardware e software. Technology Ind. Automation, Federal Center of Technological Education of Pelotas, Pelotas, Brazil (in Portuguese)

  31. Kuhn VN, Drews Jr PLJ, Gomes SCP, Cunha MAB, Botelho SC (2011) Controle automático de um ROV para inspeção de estruturas submersas. In: 10th Brazilian symposium on intelligent automation, São João del-Rei, Brazil (in Portuguese)

  32. Li JH (2005) A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle. Robot Auton Syst 52:132–147

    Article  Google Scholar 

  33. Liang X, Gan Y, Wan L (2010) Motion controller for autonomous underwater vehicle based on parallel neural network. Int J Digit Content Technol Appl 4(9):61–67

    Article  Google Scholar 

  34. Luque JCC (2007) Controle robusto multivariável para um veículo submersível autônomo. M.S. thesis, Dept. Mech. Eng., Polytechnic School of Univ. of São Paulo, São Paulo, Brazil (in Portuguese)

  35. Magalhães PHV (2007) Desenvolvimento de um Submersível Remotamente Operado de Baixo Custo e Caracterização dos Sistemas de Propulsão e Vetorização de Empuxo por Hélice. Ph.D. thesis, Dept. Mech. Eng., Univ. Federal of Minas Gerais, Belo Horizonte, Brazil (in Portuguese)

  36. Moraes CEM (2005) ROVFURG-I: Projeto e construção de um veículo subaquático não tripulado de baixo custo. M.S. thesis, Dept. Ocean Eng., Univ. Federal of Rio Grande, Rio Grande, Brazil (in Portuguese)

  37. Nagashima Y, Taguchi N, Ishimatsu T, Mizokami T (2002) Development of a compact autonomous underwater vehicle using variable vector propeller. In: Proc 12th Int Offshore and Polar Eng Conf, Kitakyushu, Japan, pp 290–294

  38. Narimani M, Nazem S, Loueipour M (2009) Robotics vision-based system for an underwater pipeline and cable tracker. In: IEEE OCEANS’09, Bremen, Germany

  39. Pedrini H, Schwartz WR (2007) Análise de Imagens Digitais: Princípios, Algoritmos e Aplicações. Ed. Thomson Learning, São Paulo, Brazil (in Portuguese)

  40. Salim MA, Noordin A, Jahari AN (2010) A robust of fuzzy logic and proportional derivative control system for monitoring underwater vehicles. In: 2nd Int Conf Comput Research and Develop, Kuala Lumpur, Malaysia

  41. Schechner YY, Karpel N (2005) Recovery of underwater visibility and structure by polarization analysis. IEEE J Ocean Eng 30(3):570–587

    Article  Google Scholar 

  42. Seabotix Inc (2007) Standard Thruster & 2 wire whip: BTD150 Specifications, San Diego, CA

  43. Sebastián E, Sotelo MA (2005) Adaptive fuzzy sliding mode controller for the snorkel underwater vehicle. In: Proc 2nd Int Conf Informatics Control, Automation and Robotics, Barcelona, Spain, pp 255–259

  44. Shi Y, Qian W, Yan W, Li J (2007) Adaptive depth control for autonomous underwater vehicles based on feed forward neural networks. Int J Comput Sci Appl 4:107–118

    Google Scholar 

  45. Singh P, Sehgal A (2006) Computer vision, sonar and sensor fusion for autonomous underwater vehicle (AUV) navigation. In: CIENCIA’06, Hyderabad, India

  46. Stockwell W (2003) Angle Random Walk. Crossbow Technology Inc., Milpitas, CA. [Online]. http://www.xbow.com/pdf/AngleRandomWalkAppNote.pdf

  47. Szelinski R (2010) Computer vision: algorithms and applications. Springer, New York

    Google Scholar 

  48. Tavares AM (2003) Um estudo sobre modelagem e o controle de veículos subaquáticos não tripulados. M.S. thesis, Dept. Ocean Eng., Univ. Federal of Rio Grande, Rio Grande, Brazil (in Portuguese)

  49. Tocci RJ, Widmer NS, Moss GL (2007) Sistemas digitais: princípios e aplicações, 10th edn. Pearson Prentice Hall, São Paulo (in Portuguese)

    Google Scholar 

  50. Tritech International Limited (2009) Typhoon: colour zoom camera, Aberdeen, United Kingdom

  51. Tumari MZBM (2008) The development of a low cost underwater vehicle. Bachelor of Eng., Univ. Tech. Malaysia, Skudai, Malaysia

  52. Wang B, Wan L, Xu Y-R, Qin Z-B (2009) Modeling and simulation of a mini AUV in spatial motion. J Mar Sci Appl 8:7–12

    Article  Google Scholar 

  53. Wang S-X, Sun X-J, Wang Y-H, Wu J-G, Wang X-M (2011) Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider. China Ocean Eng 25(1):97–112

    Article  MATH  Google Scholar 

  54. Weinberg H (2009) Calibrating iMEMS Gyroscopes. Analog Devices Inc., Norwood, MA. [Online]. http://www.analog.com/static/imported-files/application_notes/AN-1049.pdf

  55. Williams SB, Newman P, Rosenblatt J, Dissanayake G, Durrant-Whyte H (2001) Autonomous underwater navigation and control. Robotica 19(5):481–496

    Article  Google Scholar 

  56. Wirth S (2007) Visual underwater cable/pipeline tracking. M.S. thesis, Dept. Comput. Sci., Koblenz-Landau Univ., Koblenz, Germany

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinícius Nizolli Kuhn.

Additional information

Technical Editor: Glauco Cauring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, V.N., Drews, P.L.J., Gomes, S.C.P. et al. Automatic control of a ROV for inspection of underwater structures using a low-cost sensing. J Braz. Soc. Mech. Sci. Eng. 37, 361–374 (2015). https://doi.org/10.1007/s40430-014-0153-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0153-z

Keywords

Navigation