Skip to main content
Log in

Using couple stress theory for modeling the size-dependent instability of double-sided beam-type nanoactuators in the presence of Casimir force

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

While the pull-in instability of beam-type electromechanical nanoactuators with single actuating electrode has been widely addressed in literature, limited research works have been devoted to modeling the pull-in phenomenon in actuators with double-sided actuating electrodes. Herein, couple stress theory (CST) has been used to study the size-dependent instability of two double-sided actuators, i.e., nano-bridges and nano-cantilevers. The influence of Casimir force has been considered in the model. The analytical differential transformation method (DTM) has been applied to solve the governing equations as well as numerical method. Furthermore, a lumped parameter model has been developed to simply explain the physical performance of the systems without mathematical complexity. The critical deflection and pull-in voltage of the nanostructures as basic design parameters have been calculated. Effect of the Casimir attraction and the size dependency and the importance of coupling between them on the pull-in performance have been discussed for both nano-structures. The present work can be helpful to precise design and analysis of nano-cantilevers and nano-bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Batra RC, Porfiri M, Spinello D (2006) Capacitance estimate for electrostatically actuated narrow microbeams. Micro Nano Lett 1(2):71–73

    Article  Google Scholar 

  2. Nabian A, Rezazadeh G, Almassi M, Borghee AM (2013) On the stability of a functionally graded rectangular micro-plate subjected to hydrostatic and nonlinear electrostatic pressures. Acta Mech Solida Sinica 26(2):205–220

    Article  Google Scholar 

  3. Klimchitskaya G L, Mohideen U, Mostepanenko VM (2000) Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals. Phys Rev A 61:062107

  4. Bostrom M, Sernelius BE (2000) Fractional van der Waals interaction between thin metallic films. Phys Rev B 61:2204–2210

    Article  Google Scholar 

  5. Israelachvili JN, Tabor D (1972) The Measurement of Van Der Waals dispersion forces in the Range 1.5 to 130 nm. Proceeding of the Royal Society. 331:19–38

  6. Moser J, Guttinger J, Eichler A, Esplandiu MJ, Liu DE, Dykman MI, Bachtold A (2013) Ultrasensitive force detection with a nanotube mechanical resonator. Nature Nanotech 8:493–496

    Article  Google Scholar 

  7. Buks E, Roukes ML (2001) Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys Rev B. doi:10.1103/.033402

    Google Scholar 

  8. Tadi Beni Y, Vahdati AR, Abadyan M (2013) Using ALE-FEM to simulate the instability of beam–type nano-actuator in the presence of electrostatic field and dispersion forces. IJST Trans Mech Eng 37(M1):1–9

    Google Scholar 

  9. Moghimi Zand M, Ahmadian MT, Rashidian B (2010) Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces. Proceedings of the Institution Mechanical Engineers Part C Journal of Mechanical Engineering Science 224(9):2037–2047

  10. Lin WH, Zhao YP (2005) Casimir effect on the pull-in parameters of nanometer switches. Microsys Technol 11:80–85

    Article  Google Scholar 

  11. Lin WH, Zhao YP (2005) Nonlinear behavior for nanoscale electrostatic actuators with Casimir force. Chaos Solitons Fractals 23:1777–1785

  12. Ramezani A, Alasty A, Akbari J (2008) Analytical investigation and numerical verification of Casimir effect on electrostatic nano-cantilevers. Microsyst Technol 14:145–157

    Article  Google Scholar 

  13. Koochi A, Kazemi A, Tadi Beni Y, Yekrang A, Abadyan M (2010) Theoretical study of the effect of Casimir attraction on the pull-in behavior of beam-type NEMS using modified Adomian method. Physica E 43:625–632

    Article  Google Scholar 

  14. Eringen AC, Edelen DBG (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248

    Article  MathSciNet  MATH  Google Scholar 

  15. Ejike UBCO (1969) The plane circular crack problem in the linearized couple-stress theory. Int J Eng Sci 7:947–961

    Article  MATH  Google Scholar 

  16. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  MATH  Google Scholar 

  17. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  18. Anthoine A (2000) Effect of couple-stresses on the elastic bending of beams. Int J Solids Struct 37:1003–1018

    Article  MATH  Google Scholar 

  19. Park SK, Gao XL (2006) Bernoulli-Euler beam model based on a modified couple stress theory. J Micromech Microeng 16:2355–2359

    Article  Google Scholar 

  20. Xia W, Wang L, Yin L (2010) Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int J Eng Sci 48:2044–2053

    Article  MathSciNet  MATH  Google Scholar 

  21. Li Y, Meguid SA, Fu Y, Xu D (2013) Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches. Acta Mech 22(8):1741–1755

    Article  MathSciNet  MATH  Google Scholar 

  22. Kong SL (2013) Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory. Appl Math Modell 37(12–13):7481–7488

    Article  MathSciNet  Google Scholar 

  23. Yin L, Qian Q, Wang L (2011) Size effect on the static behavior of electrostatically actuated microbeams. Acta Mech Sin 27(3):445–451

    Article  MATH  Google Scholar 

  24. Rahaeifard M, Kahrobaiyan MH, Ahmadian MT, Firoozbakhsh K (2012) Size-dependent pull-in phenomena in nonlinear microbridges. Int J Mech Sci 54:306–310

    Article  Google Scholar 

  25. Rokni H, Seethaler RJ, Milani AS, Hashemi SH, Li XF (2013) Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation. Sens Actuators A 190:32–43

    Article  Google Scholar 

  26. Baghani M (2012) Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int J Eng Sci 54:99–105

    Article  MathSciNet  Google Scholar 

  27. Noghrehabadi A, Eslami M, Ghalambaz M (2013) Influence of size effect and elastic boundary condition on the pull-in instability of nano-scale cantilever beams immersed in liquid electrolytes. Int J Non Linear Mech 52:73–84

    Article  Google Scholar 

  28. Abbasnejad B, Rezazadeh G, Shabani R (2013) Stability analysis of a capacitive fgm micro-beam using modified couple stress theory. Acta Mechanica Solida Sinica 26(4):427–440

    Article  Google Scholar 

  29. Zamanzadeh M, Rezazadeh G, Poornaki IJ, Shabani R (2013) Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl Math Modell 37:6964–6978

    Article  MathSciNet  Google Scholar 

  30. Fathalilou M, Sadeghi M, Rezazadeh G (2014) Micro-inertia effects on the dynamic characteristics of micro-beams considering the couple stress theory. Mech Res Com 60:74–80

    Article  Google Scholar 

  31. Fathalilou M, Sadeghi M, Rezazadeh G (2014) Gap Dependent Bifurcation Behavior of a nano-beam subjected to a nonlinear Electrostatic Pressure. Lat Am J Solid Struc 11(2014):2426–2443

    Article  Google Scholar 

  32. Soroush R, Koochi A, Kazemi AS, Noghrehabadi A, Haddadpour H, Abadyan M (2010) Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators. Physica Scripta 82(4):045801

    Article  MATH  Google Scholar 

  33. Tadi Beni Y, Karimipour I, Abadyan MR (2014) Modeling the effect of intermolecular force on the size dependent pull-in behavior of beam-type NEMS using modified couple stress theory. J Mech Sci Tech 28(9):3749–3757

    Article  Google Scholar 

  34. Ghorbanpour Arani A, Jalilvand A, Ghaari M, Talebi Mazraehshahi M, Kolahchi R, Roudbari MA, Amir S (2014) Nonlinear pull-in instability of boron nitride nano-switches considering electrostatic and Casimir forces. Scientia Iranica F 21(3):1183–1196

    Google Scholar 

  35. Ghorbanpour Arani A, Amir S (2013) Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory. Physica B Condens Matter 419:1–6

    Article  Google Scholar 

  36. Ghorbanpour Arani A, Ghaffari M, Jalilvand A, Kolahchi R (2013) Nonlinear nonlocal pull-in instability of boron nitride nanoswitches. Acta Mech 224(12):3005–3019

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang GW, Zhang Y, Zhao YP, Yang GT (2004) Pull-in instability study of carbon nanotube tweezers under the influence of van der Waals forces. J Micromech Microeng 14(8):1119

    Article  Google Scholar 

  38. Tadi Beni Y, Koochi A, Abadyan M (2011) Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS. Physica E 43:979–988

    Article  Google Scholar 

  39. Abdi J, Koochi A, Kazemi AS, Abadyan M (2011) Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory. Smart Mater Struct 20:055011. doi:10.1088/0964-1726/20/5/055011

    Article  Google Scholar 

  40. Koochi A, Fazli N, Rach R, Abadyan M (2014) Modeling the pull-in instability of the CNT-based probe/actuator under the Coulomb force and the van der Waals attraction. Lat Am J Solid Struc 11:1315–1328

    Article  Google Scholar 

  41. Zhang J, Fu Y (2012) Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47(7):1649–1658

    Article  MathSciNet  MATH  Google Scholar 

  42. Dym CL, Shames IH (1984) Solid mechanics: a variational approach. Railway Publishing House, Beijing

    MATH  Google Scholar 

  43. Gupta R K (1997) Electrostatic pull-in test structure design for in situ mechanical property measurements of microelectromechanical systems PhD Dissertation Massachusetts Institute of Technology (MIT), Cambridge, MA

  44. Zhou JK (1986) Differential transformation and its applications for electrical circuits (in Chinese). Huazhong University Press, Wuhan

    Google Scholar 

  45. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  46. Senturia SD (2001) Microsystem design, Massachusetts Institute of Technology. Kluwer Academic Publishers, USA

    Google Scholar 

  47. Arikoglu A, Ozkol I (2005) Solution of boundary value problems for integro-differential equations by using differential transform method. Appl Math Comput 168:1145–1158

    MathSciNet  MATH  Google Scholar 

  48. Arikoglu A, Ozkol I (2006) Solution of differential–difference equations by using differential transform method. Appl Math Comput 181(2006):153–162

    MathSciNet  MATH  Google Scholar 

  49. Ebrahimi F, Mokhtari M (2014) Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method. J Brazil Soc Mech Sci Eng. doi:10.1007/s40430-014-0255-7

    Google Scholar 

  50. Ghazavi MR, Rezazadeh G, Azizi S (2009) Finite element analysis of static and dynamic pull-in instability of a fixed-fixed micro beam considering damping effects. Sensors Transducers J 103(4):132–143

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamadreza Abadyan.

Additional information

Technical Editor: Fernando Alves Rochinha.

Appendices

Appendix A: DTM

The basic idea and fundamental theorems of DTM are given in [4749]. The differential transform of the kth derivative of arbitrary function f(x) is defined as:

$$ F\left( k \right) = \frac{1}{k!}\left[ {\frac{{d^{k} f(x)}}{{dx^{k} }}} \right]_{{x = x_{0} }} $$
(A.1)

where F(k) is the transformed function.

$$ f(x) = \sum\limits_{k = 0}^{\infty } {F(k)\left( {x - x_{0} } \right)^{k} } $$
(A.2)

The differential transformation relations for functional operations and boundary conditions are found in Table 3.

Table 3 DTM theorems used for equations and boundary conditions

By multiplying both sides of the governing Eq. (18) by \( \left( { 1- \bar{w} (x )} \right)^{4} \left( {\Omega + \bar{w} (x )} \right)^{4} \), then substituting the relations of Table 3 in Eq. (18) and after some elaborations, one can found (A.3) for the nano-structures. For example, the transformation—of

$$ f\left( x \right) = \left( {1 - \bar{w}(x)} \right)^{2} $$

is calculated as \( F(k) = \sum\limits_{\lambda = 0}^{k} {\left[ {\delta (\lambda ) - \bar{W}\left( \lambda \right)} \right]} \left[ {\delta (k - \lambda ) - \bar{W}\left( {k - \lambda } \right)} \right].\)

$$ \begin{aligned} &\sum\limits_{R = 0}^{k} {\left( {\left[ {\sum\limits_{\lambda = 0}^{R} {\left\{ {\sum\limits_{m = 0}^{\lambda } {\sum\limits_{p = 0}^{m} {\sum\limits_{q = 0}^{p} {\left[ {\delta (p - q) - \bar{W}\left( {p - q} \right)} \right]\left[ {\delta (q) - \bar{W}(q)} \right]\left[ {\delta \left( {m - p} \right) - \bar{W}\left( {m - p} \right)} \right]\left[ {\delta \left( {\lambda - m} \right) - \bar{W}\left( {\lambda - m} \right)} \right]} } } } \right\}} } \right.} \right.} \hfill \\ & \quad \times\left. {\left\{ {\sum\limits_{t = 0}^{R - \lambda } {\sum\limits_{i = 0}^{t} {\sum\limits_{s = 0}^{i} {\left[ {\Omega \delta (i - s) + \bar{W}\left( {i - s} \right)} \right]\left[ {\Omega \delta (s) + \bar{W}(s)} \right]\left[ {\Omega \delta \left( {t - i} \right) + \bar{W}\left( {t - i} \right)} \right]\left[ {\Omega \delta \left( {R - \lambda - t} \right) + \bar{W}\left( {R - \lambda - t} \right)} \right]} } } } \right\}} \right] \hfill \\ &\quad \times\left[ {\left( {1 + \xi } \right)\left( {k - R + 4} \right)\left( {k - R + 3} \right)\left( {k - R + 2} \right)\left( {k - R + 1} \right)\bar{W}\left( {k - R + 4} \right)} \right. \hfill \\ & \quad - \eta \left\{ {\sum\limits_{r = 1}^{n} \frac{1}{r} \sum\limits_{L = 0}^{r - 1} {\left( {L + 1} \right)\bar{W}\left( {L + 1} \right)\left( {r - L} \right)\bar{W}\left( {r - L} \right)} } \right\}\left. {\left. {\left( {k - R + 2} \right)\left( {k - R + 1} \right)\bar{W}\left( {k - R + 2} \right)} \right]} \right) = \hfill \\ & \quad + \alpha \sum\limits_{t = 0}^{k} {\sum\limits_{i = 0}^{t} {\sum\limits_{s = 0}^{i} {\left[ {\Omega \delta (i - s) + \bar{W}\left( {i - s} \right)} \right]\left[ {\Omega \delta (s) + \bar{W}(s)} \right]} \left[ {\Omega \delta \left( {t - i} \right) + \bar{W}\left( {t - i} \right)} \right]\left[ {\Omega \delta \left( {k - t} \right) + \bar{W}\left( {k - t} \right)} \right]} } \hfill \\ & \quad - \alpha \sum\limits_{m = 0}^{k} {\sum\limits_{p = 0}^{m} {\sum\limits_{q = 0}^{p} {\left[ {\delta \left( {p - q} \right) - \bar{W}\left( {p - q} \right)} \right]\left[ {\delta (q) - \bar{W}(q)} \right]} \left[ {\delta \left( {m - p} \right) - \bar{W}\left( {m - p} \right)} \right]\left[ {\delta \left( {k - m} \right) - \bar{W}\left( {k - m} \right)} \right]} } \hfill \\ & \quad + \beta \sum\limits_{R = 0}^{k} {\left( {\left[ {\sum\limits_{\lambda = 0}^{R} {\left\{ {\sum\limits_{q = 0}^{\lambda } {\left[ {\delta (\lambda - q) - \bar{W}\left( {\lambda - q} \right)} \right]\left[ {\delta (q) - \bar{W}(q)} \right]} } \right\}} } \right.} \right.} \left. {\left\{ {\sum\limits_{s = 0}^{R - \lambda } {\left( {\Omega \delta \left( {R - \lambda - s} \right) + \bar{W}\left( {R - \lambda - s} \right)} \right)\left( {\Omega \delta (s) + \bar{W}(s)} \right)} } \right\}} \right] \hfill \\ &\quad \times\left. {\left[ {\sum\limits_{s = 0}^{k - R} {\left( {\Omega \delta \left( {k - R - s} \right) + \bar{W}\left( {k - R - s} \right)} \right)\left( {\Omega \delta (s) + \bar{W}(s)} \right)} - \sum\limits_{q = 0}^{k - R} {\left( {\delta \left( {k - R - q} \right) - \bar{W}\left( {k - R - q} \right)} \right)\left( {\delta (q) - \bar{W}(q)} \right)} } \right]} \right) \hfill \\ & \quad + \gamma \beta \sum\limits_{R = 0}^{k} {\left( {\left[ {\sum\limits_{\lambda = 0}^{R} {\left\{ {\sum\limits_{q = 0}^{\lambda } {\sum\limits_{h = 0}^{q} {\left[ {\delta \left( {q - h} \right) - \bar{W}\left( {q - h} \right)} \right]\left[ {\delta (h) - \bar{W}(h)} \right]\left[ {\delta \left( {\lambda - q} \right) - \bar{W}\left( {\lambda - q} \right)} \right]} } } \right\}} } \right.} \right.} \hfill \\ &\quad \times\left. {\left\{ {\sum\limits_{s = 0}^{R - \lambda } {\sum\limits_{j = 0}^{s} {\left[ {\Omega \delta \left( {s - j} \right) + \bar{W}\left( {s - j} \right)} \right]\left[ {\Omega \delta (j) + \bar{W}(j)} \right]\left[ {\Omega \delta \left( {R - \lambda - s} \right) + \bar{W}\left( {R - \lambda - s} \right)} \right]} } } \right\}} \right] \hfill \\ &\quad \times\left. {\left[ {\left( {\Omega \delta \left( {k - R} \right) + \bar{W}\left( {k - R} \right)} \right) - \delta (k - R) + \bar{W}\left( {k - R} \right)} \right]} \right) \hfill \\ \end{aligned} $$
(A.3)

The differential transformations of two boundary conditions is:

$$ \bar{W}\left( 0 \right) = \bar{W}\left( 1 \right) = 0\,\,\,\,\, $$
(A.4)

and the differential transformations of the remaining boundary conditions is:

$$ \sum\limits_{k = 0}^{n} {k\bar{W}\left( k \right)} = \sum\limits_{k = 0}^{n} {\bar{W}\left( k \right)} = 0\quad {\text{For nano-bridge}} $$
(A.5a)
$$ \sum\limits_{k = 0}^{n} {k\left( {k - 1} \right)\bar{W}\left( k \right)} = \sum\limits_{k = 0}^{n} {k\left( {k - 1} \right)\left( {k - 2} \right)\bar{W}\left( k \right)} = 0\quad {\text{For nano-cantilever}} $$
(A.5b)

By assuming \( \bar{W}\left( 2 \right) = a \) and \( \bar{W}\left( 3 \right) = b \), we obtain higher terms from Eq. (A.3) as:

$$ \bar{W}(4) = \frac{{\Omega^{4} \left( {8a^{3} \eta + 18a^{2} b\eta + 3\beta \gamma + 3\alpha + 3\beta } \right) - 3\beta \gamma \Omega^{3} - 3\beta \Omega^{2} - 3\alpha }}{{72(1 + \xi )\Omega^{4} }} $$
(A.6a)
$$ \bar{W}(5) = \frac{{\Omega^{4} \left[ {\left( {96a + 216b} \right)a^{3} b\eta^{2} + 36ab\eta \left( {\beta \gamma + \beta + \alpha } \right) + \eta b\left( {\xi + 1} \right)\left( {486b^{2} + 360a^{2} + 810ab} \right) - 36\eta ab\left[ {\Omega^{3} \gamma \beta + \Omega^{2} \beta + \alpha } \right]} \right]}}{{5400\Omega^{4} \left( {1 + \xi } \right)^{2} }} $$
(A.6b)

The constants a and b can be determined using Eq. (A.5a) for nano-bridge and (A.5b) for nano-cantilever.

It should be noted that the results of DTM series solution converge to that of numerical method by increasing the number of series terms.

Appendix B: Lumped parameter model

Using Rayleigh–Ritz principle (minimum potential energy approach), a LPM can be developed by minimizing the total energy of system. The total energy is a combination of bending elastic energy (U b ), stretching elastic energy (U s) and work of external force (W e). These are determined as [45, 46, 50]:

$$ U_{b} = \frac{1}{2}\int\limits_{0}^{L} {\left( {EI + 4\mu Al^{2} } \right)\left( {\frac{{d^{2} w}}{{dX^{2} }}} \right)}^{2} dX $$
(B.1)
$$ U_{\text{s}} = \frac{BHE}{8L}\left[ {\int\limits_{0}^{L} {\left( \frac{dw}{dX} \right)}^{2} dX} \right]^{2} $$
(B.2)
$$ W_{\text{e}} = \int\limits_{0}^{L} {qw(X)dX} $$
(B.3)

where q is the external force per unite length of the beam which is assumed constant for the LPM.

To develop a LPM, trial solutions for deflection of the nano-structures are selected. For nano-cantilever and nano-bridge the trial solutions can be chosen as relations (B.4) and (B.5), respectively:

$$ w(X) = w_{\hbox{max} } \left[ {1 - \cos \left( {\frac{\pi X}{2L}} \right)} \right] $$
(B.4)
$$ w(X) = w_{\hbox{max} } \left[ {\frac{1}{2} - \frac{1}{2}\cos \left( {\frac{2\pi X}{L}} \right)} \right] $$
(B.5)

Now, for nano-cantilever the total energy of system can be written as:

$$ \varPi = U_{b} - W_{\text{e}} = \frac{{\pi^{4} \left( {BEH^{3} + 48\mu Al^{2} } \right)}}{{768L^{3} }}w_{\hbox{max} }^{2} - \frac{1}{\pi }Lqw_{\hbox{max} } \left( {\pi - 2} \right) $$
(B.6)

and for nano-bridge we have:

$$ \varPi = \varPi = U_{b} + U_{s} - W_{e} = \frac{{\pi^{4} \left( {BEH^{3} + 48\mu Al^{2} } \right)}}{{12L^{3} }}w_{\hbox{max} }^{2} + \frac{{BHE\pi^{4} }}{{32L^{3} }}w_{\hbox{max} }^{4} - \frac{1}{2}Lqw_{\hbox{max} } $$
(B.7)

By imposing \( \frac{d\varPi }{{dw_{\hbox{max} } }} = 0 \) we obtain relations (B.8) for nano-cantilever and (B.9) for nano-bridge:

$$ \frac{{\pi^{5} \left( {BEH^{3} + 48\mu Al^{2} } \right)}}{{384L^{4} (\pi - 2)}}w_{\hbox{max} } - q = 0 $$
(B.8)
$$ \frac{{\pi^{4} \left( {BEH^{3} + 48\mu Al^{2} } \right)}}{{3L^{4} }}w_{\hbox{max} } + \frac{{\pi^{4} }}{{4L^{4} }}HEBw_{\hbox{max} }^{3} - q = 0 $$
(B.9)

Substituting \( q = \left. {f_{\text{elec}} } \right|_{{w = w_{\hbox{max} } }} +\ \left. {f_{Cas} } \right|_{{w = w_{\hbox{max} } }} \) in the above relations results in the equations (B.10) and (B.11) for nano-cantilever and nano-bridge, respectively:

$$ \begin{aligned} \frac{{\pi^{5} \left( {BEH^{3} + 48\mu Al^{2} } \right)}}{{384(\pi - 2)L^{4} }}w_{\hbox{max} } - \frac{{\varepsilon_{0} BV^{2} }}{{2\left( {g - w_{\hbox{max} } } \right)^{2} }}\left( {1 + 0.65\frac{{g - w_{\hbox{max} } }}{B}} \right) \hfill \\ \quad + \frac{{\varepsilon_{0} BV^{2} }}{{2\left( {\Omega g + w_{\hbox{max} } } \right)^{2} }}\left( {1 + 0.65\frac{{\Omega g + w_{\hbox{max} } }}{B}} \right) - \frac{{\pi^{2} \hbar cB}}{{240\left( {g - w_{\hbox{max} } } \right)^{4} }} + \frac{{\pi^{2} \hbar cB}}{{240\left( {\Omega g + w_{\hbox{max} } } \right)^{4} }} = 0 \hfill \\ \end{aligned} $$
(B.10)
$$ \begin{aligned} \frac{{\pi^{4} \left( {BEH^{3} + 48\mu Al^{2} } \right)}}{{3L^{4} }}w_{\hbox{max} } + \frac{{\pi^{4} HEB}}{{4L^{4} }}w_{\hbox{max} }^{3} - \frac{{\varepsilon_{0} BV^{2} }}{{2\left( {g - w_{\hbox{max} } } \right)^{2} }}\left( {1 + 0.65\frac{{\left( {g - w_{\hbox{max} } } \right)}}{B}} \right) \hfill \\ \quad + \frac{{\varepsilon_{0} BV^{2} }}{{2\left( {\Omega g + w_{\hbox{max} } } \right)^{2} }}\left( {1 + 0.65\frac{{\left( {\Omega g + w_{\hbox{max} } } \right)}}{B}} \right) - \frac{{\pi^{2} \hbar cB}}{{240\left( {g - w_{\hbox{max} } } \right)^{4} }} + \frac{{\pi^{2} \hbar cB}}{{240\left( {\Omega g + w_{\hbox{max} } } \right)^{4} }} = 0 \hfill \\ \end{aligned} $$
(B.11)

Using the definition of \( \bar{w}_{\hbox{max} }^{{}} = {{w_{\hbox{max} } } \mathord{\left/ {\vphantom {{w_{\hbox{max} } } g}} \right. \kern-0pt} g} \), the above equations can be dimensionless to (B.12) for nano-cantilever and (B.13) for nano-bridge:

$$ \frac{{\pi^{5} }}{32(\pi - 2)}\left( {1 + \xi } \right)\bar{w}_{\hbox{max} } - \frac{{\beta \left( {\text{1} + } \right.\left. {\gamma \left( {1 - \bar{w}_{\hbox{max} } } \right)} \right)}}{{\left( {1 - \bar{w}_{\hbox{max} } } \right)^{2} }} + \frac{{\beta \left( {\text{1} + \left( {\Omega + \bar{w}_{\hbox{max} } } \right)} \right)}}{{\left( {\Omega + \bar{w}_{\hbox{max} } } \right)^{2} }} - \frac{\alpha }{{\left( {1 - \bar{w}_{\hbox{max} } } \right)^{4} }} + \frac{\alpha }{{\left( {\Omega + \bar{w}_{\hbox{max} } } \right)^{4} }} = 0 $$
(B.12)
$$ 4\pi^{4} \left( {1 + \xi } \right)\bar{w}_{\hbox{max} } + \frac{{\eta \pi^{4} }}{2}\bar{w}_{\hbox{max} }^{3} - \frac{{\beta \left( {\text{1} + } \right.\left. {\gamma \left( {1 - \bar{w}_{\hbox{max} } } \right)} \right)}}{{\left( {1 - \bar{w}_{\hbox{max} } } \right)^{2} }} + \frac{{\beta \left( {\text{1} + } \right.\left. {\gamma \left( {\Omega + \bar{w}_{\hbox{max} } } \right)} \right)}}{{\left( {\Omega + \bar{w}_{\hbox{max} } } \right)^{2} }} - \frac{\alpha }{{\left( {1 - \bar{w}_{\hbox{max} } } \right)^{4} }} + \frac{\alpha }{{\left( {\Omega + \bar{w}_{\hbox{max} } } \right)^{4} }} = 0 $$
(B.13)

Relations (B.12) and (B.13) can be rewritten in the form of Eq. (33).

Appendix C: Modified couple stress theory

The modified couple stress theory has been presented recently by Yang et al. [17] including only one higher-order material length scale parameter in the constitutive equations. They imposed some restrictions on the couple stress theory to develop a simpler theory. The strain energy density in \( \bar{U} \), in the linear elastic isotropic material based on the modified couple stress theory can be written as [17]:

$$ \bar{U}\text{ = }\frac{\text{1}}{\text{2}}\left( {\sigma_{ij} \varepsilon_{ij} + m_{ij} \chi_{ij} } \right) $$
(C.1)

where

$$ \chi_{ij}^{s} = \frac{1}{2}e_{jkl} u_{l,ki} $$
(C.3)
$$ m_{ij} = \text{2}\mu l^{2} \chi_{ij} $$
(C.4)

In above equations, χ ij and m ij indicate components of symmetric rotation gradient tensor, Cauchy’s stress and high order stress tensors, respectively.

By substituting Eq. (3) in (C.3), (C.4) and then in (C.1) the total energy of the system based on the modified couple stress theory can be obtained as:

$$ \begin{aligned} U = & \frac{\text{1}}{\text{2}}\int\limits_{0}^{L} {\int\limits_{A} {\left[ {\varepsilon_{11} \sigma_{11} + \chi_{12} m_{12} + \chi_{21} m_{21} } \right]} } dAdX \\ = & \frac{\text{1}}{\text{2}}\int\limits_{0}^{L} {\left[ {\left( {EI + \mu Al^{2} } \right)\left( {\frac{{\partial^{2} w}}{{\partial X^{2} }}} \right)^{2} + EA\left( {\frac{\partial u}{\partial X} + \frac{1}{2}\left( {\frac{\partial w}{\partial X}} \right)^{2} } \right)^{2} } \right]} dX \\ \end{aligned} $$
(C.5)

Now, by utilizing Hamilton principle, i.e., δ(UV) = 0, in which δ indicates variations symbol, the differential equation of longitudinal and lateral deflection of the system can be derived as the following:

$$ EA\frac{\partial }{\partial X}\left( {\frac{\partial u}{\partial X} + \frac{1}{2}\left( {\frac{\partial w}{\partial X}} \right)^{2} } \right) = 0 $$
(C.6)
$$ - EA\frac{\partial }{\partial X}\left[ {\left( {\frac{\partial u}{\partial X} + \frac{1}{2}\left( {\frac{\partial w}{\partial X}} \right)^{2} } \right)\frac{\partial w}{\partial X}} \right] + \left( {EI + \mu Al_{{}}^{2} } \right)\frac{{\partial^{4} w}}{{\partial X^{4} }} = f_{elec} + f_{Cas} $$
(C.7)

And the boundary conditions are obtained as:

$$ u(0) = u(L) = 0 $$
(C.8a)
$$ w\left( 0 \right) = \frac{\partial w\left( 0 \right)}{\partial X} = w\left( L \right) = \frac{\partial w\left( L \right)}{\partial X} = 0\quad {\text{For Nano-bridge}} $$
(C.8b)
$$ w\left( 0 \right) = \frac{\partial w\left( 0 \right)}{\partial X} = \frac{{\partial^{2} w\left( L \right)}}{{\partial X^{2} }} = \frac{{\partial^{3} w\left( L \right)}}{{\partial X^{3} }} = 0\quad {\text{For Nano-cantilever}} $$
(C.8c)

Figure 11 shows the normalized maximum deflection of the nano-bridge versus dimensionless input voltage using three different theories, i.e.: classic continuum theory (CCT), modified couple stress theory (MCST) and couple stress theory (CST). The geometry and material properties of the beams are identified in Table 4. It is obvious from this figure that for any given applied voltage the maximum deflection predicted by CST is lower than those of MCST and CCT. Furthermore, the pull-in voltage predicted by CST is greater than that of CCT and MCST

Fig. 11
figure 11

Normalized maximum deflection of the nano-bridge versus dimensionless input voltage determined using classic continuum theory (CCT), modified couple stress theory (MCST) and couple stress theory (CST)

.

Table 4 Geometry and constitutive material properties used in Fig. 11

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimipour, I., Beni, Y.T., Koochi, A. et al. Using couple stress theory for modeling the size-dependent instability of double-sided beam-type nanoactuators in the presence of Casimir force. J Braz. Soc. Mech. Sci. Eng. 38, 1779–1795 (2016). https://doi.org/10.1007/s40430-015-0385-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0385-6

Keywords

Navigation