Skip to main content
Log in

Thermal analysis of laser beam welding of nickel-based super alloy Inconel 625 to AISI 316L, using Gaussian optics theory in keyhole

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Keyhole laser welding is widely used as an industrial joining method in recent years, but it is not quantitatively understood due to its high complexity. This paper aims to provide a computational platform to quantitatively predict the thermal history of various locations such as HAZ and WM in the welded parts. The model characterizes the absorbed laser power in the keyhole wall at different depths by applying emission theory of light. Bremsstrahlung reflection, Fresnel absorption coefficient and multiple reflection, obtained from a volumetric heat flux distribution, are used to calculate using the absorbed laser beam density in the butt joint of nickel-based super alloy Inconel 625 to AISI 316L. The simulation results show that the model predicts the thermal history in various locations in good agreement with experimental results. The presented model provides a volumetric model to simulate the heat flux profile using various Fresnel absorption coefficients over the sample depth that captures the actual operation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lingenfelter A (1989) Welding of Inconel alloy 718: a historical overview. In: Loria EA (ed) Superalloy 718: metallurgy and applications. The Minerals, Metals and Materials Society, pp 673–683

  2. Radavich JF (1989) The physical metallurgy of cast and wrought alloy 718 In: Lopia EA (ed) Superalloy 718: metallurgy and applications. The Minerals, Metals and Materials Society, pp 229–240

  3. Salonitis K, Drougas D (2010) Chryssolouris G, finite element modeling of penetration laser welding of sandwich materials. J Phys Procedia 5:327–335

    Article  Google Scholar 

  4. Tan W, Bailey NS, Shin YC (2013) Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation. J Phys D Appl Phys 46:055501

    Article  Google Scholar 

  5. Pang S, Chen L, Zhou J, Yin Y, Chen T (2011) A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding. J Phys D Appl Phys 4(4):025301

    Article  Google Scholar 

  6. Vänskä M, Abt F, Weber R, Salminena A, Graf T (2013) Effects of welding parameters on to keyhole geometry for partial penetration laser welding. J. Phys Procedia 41:199–208

    Article  Google Scholar 

  7. Naffakh H, Shamanian M, Ashrafizadeh F (2009) Dissimilar welding of AISI 310 austenitic stainless steel to nickel-based alloy Inconel 657. J Mater Process Technol 209:3628–3639

    Article  Google Scholar 

  8. Baghjari SH, AkbariMousavi SAA (2014) Experimental investigation on dissimilar pulsed Nd:YAG laser welding of AISI 420 stainless steel to kovar alloy. J Mater Des 57:128–134

    Article  Google Scholar 

  9. Al-Kazzaz H, Medraj M, Cao X, Jahazi M (2008) Nd:YAG, laser welding of aerospace grade ZE41A magnesium alloy Modeling and experimental investigations. J. Mater Chem Phys 109:61–76

    Article  Google Scholar 

  10. Zhang YM, Liu YC (2007) Control of dynamic keyhole welding process. J Autom 43:876–884

    Article  MathSciNet  MATH  Google Scholar 

  11. Fujinaga S, Takenaka H, Narikiyo T, Katayama S, Matsunawa A (2000) Direct observation of keyhole behavior during pulse modulated high-power Nd:YAG laser irradiation. J Phys D Appl Phys 33:492–497

    Article  Google Scholar 

  12. Volpp J, Vollertsen F (2013) Analytical modeling of the keyhole including multiple reflections for analysis of the influence of different laser intensity distributions on keyhole geometry. J. Phys Procedia 41:453–461

    Google Scholar 

  13. Ramkumar KD, Patel SD, Parveen SS, Choudhury DJ, Prabaharan P, Arivazhagan N, Anthony Xavior M (2014) Influence of filler metals and welding techniques on the structure property relationships of Inconel 718 and AISI 316L dissimilar weldments. J Mater Des. doi:10.1016/j.matdes.2014.05.019

    Google Scholar 

  14. Kaplan A (1994) A model of deep penetration laser welding based on calculation of the keyhole profile. J Phys D Appl Phys 27:1805–1814

    Article  Google Scholar 

  15. Dowden J, Kapadia P, Postacioglu N (1989) An analysis of the laser-plasma interaction in laser keyhole welding. J Phys D Appl Phys 22(6):741–749

    Article  Google Scholar 

  16. Solana P, Negro G (1997) A study of the effect of multiple reflections on the shape of the keyhole of the keyhole in the laser processing of materials. J Phys D Appl Phys 30:3216–3222

    Article  Google Scholar 

  17. Bachmann M, Avilov V, Gumenyuk A, Rethmeier M (2014) Experimental and numerical investigation of an electromagnetic weld pool control for laser beam welding. J. Phys Procedia 56:515–524

    Article  Google Scholar 

  18. Jin X, Berger P, Graf T (2006) Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding. J Phys D Appl Phys 39(21):4703–4712

    Article  Google Scholar 

  19. Jin X, Li L, Zhang Y (2002) A study on Fresnel absorption and reflections in the keyhole in deep penetration laser welding. J Phys D Appl Phys 35:2304–2310

    Article  Google Scholar 

  20. Punkari A, Weckman DC, Kerr HW (2003) Effects of magnesium content on dual beam Nd:YAG laser welding of Al–Mg alloys. J Sci Technol Weld Join 8(4):269–281

    Article  Google Scholar 

  21. Lampa C, Kaplan AF, Powell J, Magnusson C (1997) An analytical thermodynamic model of laser welding. J Phys D Appl Phys 30(9):1293–1299

    Article  Google Scholar 

  22. Al-Kazzaz H, Medraj M, Cao X, Xiao M, Jahazi M (2006) Effect of laser power and joint gap on weld quality of aerospace grade ZE41A-T5 magnesium alloy using Nd:YAG laser. In: Proceedings of the international symposium on magnesium, J Technology in the Global Age, p 503–518

  23. Dausinger F, Rapp J, Beck M, Faisst F, Hack R, Hugel H (1996) Welding of aluminum: a challenging opportunity for laser technology. J Laser Appl 8(6):285–290

    Article  Google Scholar 

  24. Swift-Hook DT, Gick AEF (1973) Penetration welding with lasers. J. Weld 52(11):492–499

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nejad Ebrahimi.

Additional information

Technical Editor: Alexandre Mendes Abrao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, A.N., Arab, N.B.M. & Gollo, M.H. Thermal analysis of laser beam welding of nickel-based super alloy Inconel 625 to AISI 316L, using Gaussian optics theory in keyhole. J Braz. Soc. Mech. Sci. Eng. 38, 1199–1206 (2016). https://doi.org/10.1007/s40430-015-0422-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0422-5

Keywords

Navigation