Skip to main content
Log in

A fast decoupled reliability-based design optimization of structures using B-spline interpolation curves

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper introduces a new method for reliability-based design optimization (RBDO) of structures. In RBDO of structural problems unlike the conventional two-level approaches, sometimes it is not necessary to carry out reliability analysis for each deterministic design. The proposed method may be categorized as a decoupled method for reliable optimum design; however, it is based on the safety factor (SF) concept. To briefly describe the proposed method, a deterministic design optimization (DDO) point is obtained based on an arbitrary SF. The corresponding failure probability (P f) is then determined using Monte Carlo simulation (MCS). The P f is then compared with the targeted P f. If the relative distance error is greater than a desirable tolerance, the cubic B-spline interpolation concept is then employed as a result of which a modified SF is extracted. For the modified SF found, DDO procedure is carried out. The above procedure is iteratively repeated until convergence occurs and the reliable optimum point is found. Finally, the proposed method was applied to solving some structural problems. The obtained results were favourably in accordance with those recorded in the literature while only a fraction of P f computations was necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tu J, Choi KK, Park YH (1999) A new study on reliability-based design optimization. J Mech Des 121(4):557–564. doi:10.1115/1.28294992

    Article  Google Scholar 

  2. Kharmanda G, Mohamed A, Lemaire M (2002) Efficient reliability-based design optimization using a hybrid space with application to finite element analysis. Struct Multidiscp Optim 24(3):233–245. doi:10.1007/s00158-002-0233-z

    Article  Google Scholar 

  3. Kirjner-Neto C, Polak E, Kiureghian AD (1998) An outer approximations approach to reliability-based optimal design of structures. J Optim Theory Appl 98(1):1–16. doi:10.1023/A:10226477284194

    Article  MathSciNet  MATH  Google Scholar 

  4. Kuschel N, Rackwitz R (1997) Two basic problems in reliability-based structural optimization. Math Methods Oper Res 46(3):309–333. doi:10.1007/BF01194859

    Article  MathSciNet  MATH  Google Scholar 

  5. Madsen HO, Hansen PF (1992) A comparison of some algorithms for reliability based structural optimization and sensitivity analysis. In: Rackwitz R, Thoft-Christensen P (eds) Reliability and optimization of structural systems’91. Lecture notes in engineering, vol 76. Springer, Berlin, Heidelberg, pp 443–451. doi:10.1007/978-3-642-84753-0_34

  6. Shan S, Wang GG (2008) Reliable design space and complete single-loop reliability-based design optimization. Reliab Eng Syst Saf 93(8):1218–1230. doi:10.1016/j.ress.2007.07.006

    Article  Google Scholar 

  7. Aoues Y, Chateauneuf A (2010) Benchmark study of numerical methods for reliability-based design optimization. Struct Multidiscp Optim 41(2):277–294. doi:10.1007/s00158-009-0412-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Du X, Chen W (2004) Sequential optimization and reliability assessment method for efficient probabilistic design. J Mech Des 126(2):225–233. doi:10.1115/1.1649968

    Article  Google Scholar 

  9. Dubourg V, Sudret B, Bourinet J-M (2011) Reliability-based design optimization using kriging surrogates and subset simulation. Struct Multidiscip Optim 44(5):673–690. doi:10.1007/s00158-011-0653-8

    Article  Google Scholar 

  10. Cheng G, Xu L, Jiang L (2006) A sequential approximate programming strategy for reliability-based structural optimization. Comput Struct 84(21):1353–1367. doi:10.1016/j.compstruc.2006.03.006

    Article  Google Scholar 

  11. Bucher CG, Bourgund U (1990) A fast and efficient response surface approach for structural reliability problems. Struct Saf 7(1):57–66. doi:10.1016/0167-4730(90)90012-E

    Article  Google Scholar 

  12. Faravelli L (1989) Response-surface approach for reliability analysis. J Eng Mech 115(12):2763–2781. doi:10.1061/(ASCE)0733-9399(1989)115:12(2763)

    Article  Google Scholar 

  13. Guan XL, Melchers RE (2001) Effect of response surface parameter variation on structural reliability estimates. Struct Saf 23(4):429–444. doi:10.1016/S0167-4730(02)00013-9

    Article  Google Scholar 

  14. Rajashekhar MR, Ellingwood BR (1993) A new look at the response surface approach for reliability analysis. Struct Saf 12(3):205–220. doi:10.1016/0167-4730(93)90003-J

    Article  Google Scholar 

  15. Nguyen XS, Sellier A, Duprat F, Pons G (2009) Adaptive response surface method based on a double weighted regression technique. Probab Eng Mech 24(2):135–143. doi:10.1016/j.probengmech.2008.04.001

    Article  Google Scholar 

  16. Roussouly N, Petitjean F, Salaun M (2013) A new adaptive response surface method for reliability analysis. Probab Eng Mech 32:103–115. doi:10.1016/j.probengmech.2012.10.001

    Article  Google Scholar 

  17. Wong SM, Hobbs RE, Onof C (2005) An adaptive response surface method for reliability analysis of structures with multiple loading sequences. Struct Saf 27(4):287–308. doi:10.1016/j.strusafe.2005.02.001

    Article  Google Scholar 

  18. Kang S-C, Koh H-M, Choo JF (2010) An efficient response surface method using moving least squares approximation for structural reliability analysis. Probab Eng Mech 25(4):365–371. doi:10.1016/j.probengmech.2010.04.002

    Article  Google Scholar 

  19. Yinga L (2012) Application of stochastic response surface method in the structural reliability. Proc Eng 28:661–664. doi:10.1016/j.proeng.2012.01.787

    Article  Google Scholar 

  20. Zhao W, Qiu Z (2013) An efficient response surface method and its application to structural reliability and reliability-basedoptimization. Finite Elem Anal Des 67:34–42. doi:10.1016/j.finel.2012.12.004

    Article  Google Scholar 

  21. Der Kiureghian A (1996) Structural reliability methods for seismic safety assessment: a review. Eng Struct 18(6):412–424. doi:10.1016/0141-0296(95)00005-4

    Article  Google Scholar 

  22. Qu X, Haftka RT (2004) Reliability-based design optimization using probabilistic sufficiency factor. Struct Multidiscp Optim 27(5):314–325. doi:10.1007/s00158-004-0390-3

    Google Scholar 

  23. Wu Y, Shin Y, Sues R, Cesare M (2001) Safety-factor based approach for probability-based design optimization. In: Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, number AIAA-2001-1522, Seattle, WA, pp 199–342

  24. Nowak AS, Collins KR (2012) Reliability of structures, 2nd edn. Taylor & Francis, New York

    Google Scholar 

  25. Choi S-K, Grandhi R, Canfield RA (2006) Reliability-based structural design. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  26. de Boor C (2001) A practical guide to splines. Springer, New York

    MATH  Google Scholar 

  27. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44(247):335–341

    Article  MathSciNet  MATH  Google Scholar 

  28. Nakib R, Frangopol DM (1990) RBSA and RBSA-OPT: two computer programs for structural system reliability analysis and optimization. Comput Struct 36(1):13–27. doi:10.1016/0045-7949(90)90170-7

    Article  MATH  Google Scholar 

  29. Ghorbani A, Ghasemi MR (2010) An efficient method for reliability based optimization of structures using adaptive neuro-fuzzy systems. J Model Simul Syst 1(1):13–21

    Google Scholar 

  30. Shayanfar M, Abbasnia R, Khodam A (2014) Development of a GA-based method for reliability-based optimization of structures with discrete and continuous design variables using OpenSees and Tcl. Finite Elem Anal Des 90:61–73. doi:10.1016/j.finel.2014.06.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ghasemi.

Additional information

Technical Editor: Marcelo A. Trindade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dizangian, B., Ghasemi, M.R. A fast decoupled reliability-based design optimization of structures using B-spline interpolation curves. J Braz. Soc. Mech. Sci. Eng. 38, 1817–1829 (2016). https://doi.org/10.1007/s40430-015-0423-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0423-4

Keywords

Navigation