Skip to main content
Log in

Nonlinear vibration and adhesion instability of Casimir-induced nonlocal nanowires with the consideration of surface energy

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The following research work deals with the size-dependent dynamic instability of suspended nanowires in the presence of Casimir force and surface effects. Specifically, the Casimir-induced instability of nanostructures with circular cross-section and cylinder-plate geometry is studied. Following the Gurtin–Murdoch model and nonlocal elasticity, the governing equation of motion for nanowires is derived. To express the Casimir attraction of cylinder-plate geometry, two approaches, e.g. proximity force approximation (PFA) for small separations and Dirichlet asymptotic approximation for large separations are studied. To overcome the difficulties for solving a nonlinear problem, a step-by-step numerical method is utilized. The effects of nonlocal parameter, surface energy and vacuum fluctuations on the dynamic instability characteristic and adhesion time of nanowires are studied. It is observed that the phase portrait of Casimir-induced nanowires exhibit periodic and homoclinic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang ZL (2004) Mechanical properties of nanowires and nanobelts. Dekker Encycl Nanosci Nanotechnol 2:1773–1786

    Google Scholar 

  2. Craighead HG (2000) Nanoelectromechanical systems. Science 290:1532–1535

    Article  Google Scholar 

  3. Wang MCP, Gates BD (2009) Directed assembly of nanowires. Mater Today 12:34–43

    Article  Google Scholar 

  4. Khajeansari A, Baradaran GH, Yvonnet J (2012) An explicit solution for bending of nanowires lying on Winkler–Pasternak elastic substrate medium based on the Euler–Bernoulli beam theory. Int J Eng Sci 52:115–128

    Article  Google Scholar 

  5. Serre P, Ternon C, Stambouli V, Periwal P, Baron T (2013) Fabrication of silicon nanowire networks for biological sensing. Sens Actuators B 182:390–395

    Article  Google Scholar 

  6. Patolsky F, Zheng G, Lieber CM (2006) Nanowire-based biosensors. Anal Chem 78(13):4260–4269

    Article  Google Scholar 

  7. Husain A, Hone J, Postma HWC, Huang XMH, Drake T, Barbic M, Scherer A, Roukes ML (2003) Nanowire-based very-high-frequency electromechanical resonator. Appl Phys Lett 83:1240

    Article  Google Scholar 

  8. Feng XL, He R, Yang P, Roukes ML (2007) Very high frequency silicon nanowire electromechanical resonators. Nano Lett 7(7):1953–1959

    Article  Google Scholar 

  9. Farrokhabadi A, Abadian N, Rach R, Abadyan M (2014) Theoretical modelling of the Casimir force-induced instability in freestanding nanowires with circular cross-section. Phys E 63:67–80

    Article  Google Scholar 

  10. Zou J, Marcet Z, Rodriguez AW, Reid MTH, McCauley AP, Kravchenko II, Lu T, Bao Y, Johnson SG, Chan HB (2013) Casimir forces on a silicon micromechanical chip. Nat Commun 4:1845

    Article  Google Scholar 

  11. Lombardo FC, Mazzitelli FD, Villar PI (2008) Numerical evaluation of the Casimir interaction between cylinders. Phys Rev D 78:085009

    Article  Google Scholar 

  12. Emig T, Jaffe RL, Kardar M, Scardicchio A (2006) Casimir interaction between a plate and a cylinder. Phys Rev Lett 96:080403

    Article  Google Scholar 

  13. Terças H, Ribeiro S, Mendonça JT (2015) Quasi-polaritons in Bose-Einstein condensates induced by Casimir–Polder interaction with graphene. J Phys Condens Matter 27:214011

    Article  Google Scholar 

  14. Ali S, Terças H, Mendonça JT (2011) Nonlocal plasmon excitation in metallic nanostructures. Phys Rev B 83:153401

    Article  Google Scholar 

  15. Bordag M, Mohideen U, Mostepanenko VM (2001) New developments in the Casimir effect. Phys Rep 353:1–205

    Article  MathSciNet  MATH  Google Scholar 

  16. Casimir HBG (1948) On the attraction between two perfectly conducting plates. Proc K Ned Akad Wet 51:793

    MATH  Google Scholar 

  17. Guo JG, Zhao YP (2004) Influence of van der Waals and Casimir Forces on Electrostatic Torsional Actuators. J Microelectromech Syst 13(6):1027

    Article  Google Scholar 

  18. Lin WH, Zhao YP (2005) Nonlinear behavior for nanoscales electrostatic actuators with Casimir force. Chaos Solitons Fractals 23:1777

    Article  MATH  Google Scholar 

  19. Casimir HBG, Polder D (1948) The influence of retardation of the London-van der Waals forces. Phys Rev 73:360

    Article  MATH  Google Scholar 

  20. Teo LP (2011) First analytic correction to the proximity force approximation in the Casimir effect between two parallel cylinders. Phys Rev D 84:065027

    Article  Google Scholar 

  21. Teo LP (2011) Casimir, interaction between a cylinder and a plate at finite temperature: exact results and comparison to proximity force approximation. Phys Rev D 84:025022

    Article  Google Scholar 

  22. Barretta R, Feo L, Luciano R, Marotti de Sciarra F (2015) Variational formulations for functionally graded nonlocal Bernoulli–Euler nanobeams. Compos Struct 129:80–89

    Article  Google Scholar 

  23. Sedighi HM, Daneshmand F, Abadyan M (2015) Modified model for instability analysis of symmetric FGM double-sided nano-bridge: corrections due to surface layer, finite conductivity and size effect. Compos Struct 132:545–557

    Article  Google Scholar 

  24. Sedighi HM (2014) The influence of small scale on the Pull-in behavior of nonlocal nano-Bridges considering surface effect, Casimir and van der Waals attractions. Int J Appl Mech. doi:10.1142/S1758825114500306

    Google Scholar 

  25. Koochi A, Kazemi A, Khandani F, Abadyan M (2012) Influence of surface effects on size-dependent instability of nano-actuators in the presence of quantum vacuum fluctuations. Phys Scr 85(3):035804

    Article  MATH  Google Scholar 

  26. Abdi J, Koochi A, Kazemi AS, Abadyan M (2011) Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory. Smart Mater Struct 20:055011

    Article  Google Scholar 

  27. Karimipour I, Tadi Beni Y, Koochi A, Abadyan M (2015) Using couple stress theory for modeling the size-dependent instability of double-sided beam-type nanoactuators in the presence of Casimir force. J Braz Soc Mech Sci Eng. doi:10.1007/s40430-015-0385-6

    Google Scholar 

  28. AkbarzadehKhorshidi M, Shariati M (2015) Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory. J Braz Soc Mech Sci Eng. doi:10.1007/s40430-015-0388-3

    Google Scholar 

  29. Sedighi HM (2014) Size-dependent dynamic pull-in instability of vibrating electrically actuated micro-beams based on the strain gradient elasticity theory. Acta Astronaut 95:111–123

    Article  Google Scholar 

  30. Shojaeian M, Tadi Beni Y, Ataei H (2016) Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory. Acta Astronaut 118:62–71

    Article  Google Scholar 

  31. Ansari R, Gholami R, Sahmani S (2013) Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch Appl Mech 83(10):1439–1449

    Article  MATH  Google Scholar 

  32. Daneshmand F (2014) Combined strain-inertia gradient elasticity in free vibration shell analysis of single walled carbon nanotubes using shell theory. Appl Math Comput 243:856–869

    MathSciNet  MATH  Google Scholar 

  33. Wang ZQ, Zhao YP, Huang ZP (2010) The effects of surface tension on the elastic properties of nano structures. Int J Eng Sci 48:140–150

    Article  Google Scholar 

  34. Dingrevillea R, Qua J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53(8):1827–1854

    Article  MathSciNet  MATH  Google Scholar 

  35. Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14:431–440

    Article  MATH  Google Scholar 

  36. Sedighi HM (2015) Modeling of surface stress effects on the dynamic behavior of actuated non-classical nano-bridges. Trans Can Soc Mech Eng 39(2):137–151

    MathSciNet  Google Scholar 

  37. Eltaher MA, Mahmoud FF, Assie AE, Meletis EI (2013) Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Appl Math Comput 224:760–774

    MathSciNet  MATH  Google Scholar 

  38. Fu Y, Zhang J (2011) Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl Math Model 35(2):941–951

    Article  MathSciNet  Google Scholar 

  39. Koochi A, Hosseini-Toudeshky H, Ovesy HR, Abadyan M (2013) Modeling the influence of surface effect on instability of nano-cantilever in presence of Van der Waals force. Int J Struct Stab Dyn 13:1250072

    Article  Google Scholar 

  40. Zhang WM, Yan H, Peng ZK, Meng G (2014) Electrostatic pull-in instability in MEMS/NEMS: a review. Sens Actuators A 214:187–218

    Article  Google Scholar 

  41. Bordag M, Mohideen U, Mostepanenko VM (2001) New developments in the Casimir effect. Phys Rep 353:1

    Article  MathSciNet  MATH  Google Scholar 

  42. Lamoreaux SK (2005) The Casimir force: background, experiments, and applications. Rep Prog Phys 68:201–236

    Article  Google Scholar 

  43. Chan HB, Bao Y, Zou J, Cirelli RA, Klemens F, Mansfield WM, Pai CS (2008) Measurements of the Casimir force between a gold sphere and a silicon surface with nanoscale v trench arrays. Phys Rev Lett 101:030401

    Article  Google Scholar 

  44. Li H, Kardar M (1991) Fluctuation-induced forces between rough surfaces. Phys Rev Lett 67:3275

    Article  Google Scholar 

  45. Buscher R, Emig T (2005) Geometry and spectrum of Casimir forces. Phys Rev Lett 94:133901

    Article  Google Scholar 

  46. Rahi SJ, Emig T, Jaffe RL, Kardar M (2008) Casimir forces between cylinders and plates. Phys Rev A 78:012104

    Article  Google Scholar 

  47. Bulgac A, Magierski P, Wirzba A (2006) Scalar Casimir effect between Dirichlet spheres or a plate and a sphere. Phys Rev D 73:025007

    Article  Google Scholar 

  48. Abbasnejad B, Rezazadeh G, Shabani R (2013) Stability analysis of a capacitive fgm micro-beam using modified couple stress theory. Acta Mech Solida Sin 26(4):427–440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid M. Sedighi.

Additional information

Technical Editor: Kátia Lucchesi Cavalca Dedini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighi, H.M., Bozorgmehri, A. Nonlinear vibration and adhesion instability of Casimir-induced nonlocal nanowires with the consideration of surface energy. J Braz. Soc. Mech. Sci. Eng. 39, 427–442 (2017). https://doi.org/10.1007/s40430-016-0530-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0530-x

Keywords

Navigation