Skip to main content
Log in

Weighted principal component analysis combined with Taguchi’s signal-to-noise ratio to the multiobjective optimization of dry end milling process: a comparative study

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The weighted principal component analysis (WPCA) method is a mathematical programming technique developed to optimize multiple correlated characteristics, considering the most significant principal components scores, weighted by their respective eigenvalues. This method has obtained noteworthy results, given that it reduces the data set and still considers the correlation between the responses. However, when multiple correlated characteristics also have conflicting objectives, maximizing or minimizing the WPCA can favor some variables and harm others. This paper proposes a hybrid approach able to standardize the optimization objectives of the original responses, reduce dimensions, and, at the same time, eliminate the correlation between the multiple responses. This approach, called Weighted Principal Component Analysis combined with Taguchi’s Signal-to-noise ratio (or WPCA-SNR), is based on Taghuchi’s signal-to-noise ratio and Principal Component Analysis weighted by their respective eigenvalues. Since most of the manufacturing processes present multiple correlated characteristics and conflicting objectives, a case study based in six quality characteristics of the dry end milling process of the AISI 1045 steel is here presented to illustrate the comparative performance of two approaches, WPCA and WPCA-SNR. Theoretical and experimental results indicate that the WPCA-SNR method has evidenced acceptable solutions for both objectives, indicating feasibility of the multiobjective optimization technique applied to this process. In this case, fz = 0.08 mm/tooth, ap = 1.62 mm, Vc = 331 m/min, and ae = 15.49 mm are the optimal parameters for minimizing roughness and maximizing material removal rate, simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Costa DMD, Brito TG, De Paiva AP et al (2016) A normal boundary intersection with multivariate mean square error approach for dry end milling process optimization of the AISI 1045 steel. J Clean Prod. doi:10.1016/j.jclepro.2016.01.062

    Google Scholar 

  2. Paiva AP, Costa SC, Paiva EJ et al (2010) Multi-objective optimization of pulsed gas metal arc welding process based on weighted principal component scores. Int J Adv Manuf Technol 50:113–125. doi:10.1007/s00170-009-2504-y

    Article  Google Scholar 

  3. Moshat S, Datta S, Bandyopadhyay A, Pal PK (2010) Parametric optimization of CNC end milling using entropy measurement technique combined with grey-Taguchi method. Int J Eng Sci Technol 2:1–12. doi:10.4314/ijest.v2i2.59130

    Article  Google Scholar 

  4. Montgomery DC (2012) Design and analysis of experiments. 8th edn. Wiley, Incorporated. ISBN 1118214714, 9781118214718

  5. Bratchell N (1989) Multivariate response surface modelling by principal components analysis. J Chemom 3:579–588. doi:10.1002/cem.1180030406

    Article  Google Scholar 

  6. Paiva AP, Ferreira JR, Balestrassi PP (2007) A multivariate hybrid approach applied to AISI 52100 hardened steel turning optimization. J Mater Process Technol 189:26–35. doi:10.1016/j.jmatprotec.2006.12.047

    Article  Google Scholar 

  7. Costa DMD, Paula TI, Silva PAP, Paiva AP (2016) Normal boundary intersection method based on principal components and Taguchi’ s signal-to-noise ratio applied to the multiobjective optimization of 12L14 free machining steel turning process. doi: 10.1007/s00170-016-8478-7

  8. Lopes LGD, Brito TG, De Paiva AP et al (2016) Computers & industrial engineering robust parameter optimization based on multivariate normal boundary intersection. Comput Ind Eng 93:55–66. doi:10.1016/j.cie.2015.12.023

    Article  Google Scholar 

  9. Lu HS, Chang CK, Hwang NC, Chung CT (2009) Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling. J Mater Process Technol 209:3808–3817. doi:10.1016/j.jmatprotec.2008.08.030

    Article  Google Scholar 

  10. Su CT, Tong LI (1997) Multi-response robust design by principal component analysis. Total Qual Manag 8:409–416. doi:10.1080/0954412979415

    Article  Google Scholar 

  11. Antony J (2000) Multi-response optimization in industrial experiments using Taguchi’s quality loss function and principal component analysis. Qual Reliab Eng Int 16:3–8. doi:10.1002/(SICI)1099-1638(200001/02)

    Article  Google Scholar 

  12. Prabhu S, Vinayagam BK (2014) Multiobjective optimization of ELID grinding process using grey relational analysis coupled with principal component analysis. Adv Mech Eng 6:1–12. doi:10.1155/2014/878510

    Article  Google Scholar 

  13. Fung CP, Kang PC (2005) Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis. J Mater Process Technol 170:602–610. doi:10.1016/j.jmatprotec.2005.06.040

    Article  Google Scholar 

  14. Tong LI, Wang CH, Chen HC (2005) Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution. Int J Adv Manuf Technol 27:407–414. doi:10.1007/s00170-004-2157-9

    Article  Google Scholar 

  15. Dubey AK, Yadava V (2008) Multi-objective optimization of Nd: YAG laser cutting of nickel-based superalloy sheet using orthogonal array with principal component analysis. Opt Lasers Eng 46:124–132. doi:10.1016/j.optlaseng.2007.08.011

    Article  Google Scholar 

  16. Murthy KS, Rajendran I (2012) Optimization of end milling parameters under minimum quantity lubrication using principal component analysis and grey relational analysis. J Braz Soc Mech Sci Eng 34:253–261. doi:10.1590/S1678-58782012000300005

    Article  Google Scholar 

  17. Rocha LCS, Paiva AP, Paiva EJ, Balestrassi PP (2015) Comparing DEA and principal component analysis in the multiobjective optimization of P-GMAW process. J Braz Soc Mech Sci Eng. doi:10.1007/s40430-015-0355-z

    Google Scholar 

  18. Salmasnia A, Kazemzadeh RB, Taghi S, Niaki A (2012) An approach to optimize correlated multiple responses using principal component analysis and desirability function. 835–846. doi: 10.1007/s00170-011-3824-2

  19. Ribeiro JS, Teófilo RF, Augusto F, Ferreira MMC (2010) Simultaneous optimization of the microextraction of coffee volatiles using response surface methodology and principal component analysis. Chemom Intell Lab Syst 102:45–52. doi:10.1016/j.chemolab.2010.03.005

    Article  Google Scholar 

  20. Lopes LGD, Gomes JHDF, De Paiva AP et al (2013) A multivariate surface roughness modeling and optimization under conditions of uncertainty. Meas J Int Meas Confed 46:2555–2568. doi:10.1016/j.measurement.2013.04.031

    Article  Google Scholar 

  21. Delchambre L (2014) Weighted principal component analysis: a weighted covariance eigendecomposition approach. Mon Not R Astron Soc 446:3545–3555. doi:10.1093/mnras/stu2219

    Article  Google Scholar 

  22. Das MK, Kumar K, Barman TK, Sahoo P (2014) Application of artificial bee colony algorithm for optimization of MRR and surface roughness in EDM of EN31 tool steel. Procedia Mater Sci 6:741–751. doi:10.1016/j.mspro.2014.07.090

    Article  Google Scholar 

  23. Pinto da Costa JF, Alonso H, Roque L (2011) A weighted principal component analysis and its application to gene expression data. IEEE/ACM Trans Comput Biol Bioinform 8:246–252. doi:10.1109/TCBB.2009.61

    Article  Google Scholar 

  24. Peruchi RS, Balestrassi PP, De Paiva AP et al (2013) A new multivariate gage R&R method for correlated characteristics. Int J Prod Econ 144:301–315. doi:10.1016/j.ijpe.2013.02.018

    Article  Google Scholar 

  25. Wu FC, Chyu CC (2004) Optimization of correlated multiple quality characteristics robust design using principal component analysis. J Manuf Syst 23:134–143. doi:10.1016/S0278-6125(05)00005-1

    Article  Google Scholar 

  26. Fu T, Zhao J, Liu W (2012) Multi-objective optimization of cutting parameters in high-speed milling based on grey relational analysis coupled with principal component analysis. Front Mech Eng 7:445–452. doi:10.1007/s11465-012-0338-z

    Article  Google Scholar 

  27. Liao HC (2006) Multi-response optimization using weighted principal component. Int J Adv Manuf Technol 27:720–725. doi:10.1007/s00170-004-2248-7

    Article  Google Scholar 

  28. Bertolini AC, Schiozer DJ (2016) Principal component analysis for reservoir uncertainty reduction. J Braz Soc Mech Sci Eng 38:1345–1355. doi:10.1007/s40430-015-0377-6

    Article  Google Scholar 

  29. Wu FC, Chyu CC (2004) Optimization of correlated multiple quality characteristics robust design using principal component analysis. J Manuf Syst 2:134–143. doi:10.1016/S0278-6125(05)00005-1

    Article  Google Scholar 

  30. Zhang M, Anwer N, Stockinger A et al (2013) Discrete shape modeling for skin model representation. Proc Inst Mech Eng Part B J Eng Manuf 227:672–680. doi:10.1177/0954405412466987

    Article  Google Scholar 

  31. Turnad LG, Amin AKMN, Karim ANM, et al (2008) Modeling and optimization of tool life and surface roughness for end milling titanium alloy Ti–6Al–4V using Uncoated WC-Co inserts. In: Curtin University of Technology Science and Engineering International Conference 2008, 24–27 November 2008

  32. Thangarasu VS, Devaraj G, Sivasubramanian R (2012) High speed CNC machining of AISI 304 stainless steel; Optimization of process parameters by MOGA. Int J Eng Sci Technol 4:66–77

    Google Scholar 

  33. Chahal M, Singh V, Garg R, Kumar S (2013) To estimate the range of process parameters for optimization of surface roughness & material removal rate in CNC milling 4:4556–4563

  34. Brito TG, Paiva AP, Ferreira JR et al (2014) A normal boundary intersection approach to multiresponse robust optimization of the surface roughness in end milling process with combined arrays. Precis Eng 38:628–638. doi:10.1016/j.precisioneng.2014.02.013

    Article  Google Scholar 

  35. Singh C, Bhogal SS, Pabla Dr BS et al (2014) Empirical modeling of surface roughness and metal removal rate in CNC milling operation. Int J Innov Technol Res 2:1120–1126

    Google Scholar 

  36. Kumar G, Davis R (2014) A comparative analysis of surface roughness and material removal rate in milling operation of AISI 410 steel and aluminium 6061. Int J Eng Res Appl 4:89–93

    Google Scholar 

  37. Bhogal SS, Sindhu C, Dhami SS, Pabla BS (2015) Minimization of surface roughness and tool vibration in CNC milling operation. J Optim 2015:1–13. doi:10.1155/2015/192030

    Article  Google Scholar 

  38. Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis, 6th edn. Pearson Educational, New Jersey. ISBN 9780131877153

  39. Groot P, Postma G, Melssen W et al (2001) Application of principal component analysis to detect outliers and spectral deviations in near-field surface-enhanced Raman spectra. Anal Chim Acta 446:71–83. doi:10.1016/S0003-2670(01)01267-3

    Article  Google Scholar 

  40. Trent EM, Wright PK (2000) Metal cutting, 4th edn. Butterworth Heinemann,USA

Download references

Acknowledgments

The authors would like to thank the National Counsel of Technological and Scientific Development (CNPq), the Higher Education Personnel Improvement Coordination (CAPES), the Foundation for Research Support of the State of Minas Gerais (FAPEMIG), and Foundation for Research Support of the State of Minas Gerais (IFSULDEMINAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle M. D. Costa.

Additional information

Technical Editor: Márcio Bacci da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, D.M.D., Belinato, G., Brito, T.G. et al. Weighted principal component analysis combined with Taguchi’s signal-to-noise ratio to the multiobjective optimization of dry end milling process: a comparative study. J Braz. Soc. Mech. Sci. Eng. 39, 1663–1681 (2017). https://doi.org/10.1007/s40430-016-0614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0614-7

Keywords

Navigation