Skip to main content
Log in

A lattice Boltzmann method to simulate combined radiation–force convection heat transfer mode

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Lattice Boltzmann method is extended to solve a combined mode of radiation and force convection heat transfer problem in a channel. Effects of different parameters such as radiation parameters, Peclet number, and emissivity on temperature distribution are investigated. To benchmark the accuracy of the LBM model, the results are compared by the published results of the same geometry modeled by the finite volume method. It is observed that there are good agreements between the LBM and FVM results for all cases. Moreover, the shares of advection, radiation and conduction terms in energy equation are 0.0024, 0.9974, and 0.0002, respectively, for the last one-third piece of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

C :

Speed of light (m s−1)

\(c_{\text{p}}\) :

Specific heat capacity (J kg−1 K−1)

\(c_{k}\) :

Lattice speed (–)

\(c_{\text{s}}\) :

Sound speed (–)

\(e\) :

Discrete particle velocity (–)

\(f\) :

Stream distribution function

\(g\) :

Temperature distribution function

\(G\) :

Incident radiation (W m−2)

\(G^{{ \wedge }}\) :

Dimensionless incident radiation

\(H\) :

Channel height (m)

\(I\) :

Radiation intensity (W m−2 sr−1)

\(k\) :

Thermal conductivity (W m−1 K−1)

\(M\) :

Total number of discrete lattice direction

\(N\) :

Conduction parameter (–)

\(\vec{n}\) :

Outer unit vector normal (–)

\(P\) :

Pressure (Pa)

\(P_{\text{f}}\) :

Scattering phase function

\(Pe\) :

Peclet number (–)

\(Pr\) :

Prandtl number (–)

\(q_{\text{r}}\) :

Dimensionless radiative heat flux (–)

\({\text{RP}}\) :

Radiation parameter (–)

\(Re\) :

Reynolds number (–)

\(\vec{r}\) :

Position vector (m)

s :

Geometric distance (1/s)

\(t\) :

Time (s)

T :

Temperature (K)

\(u\) :

Length velocity (m s−1)

\(U\) :

Dimensionless × velocity (–)

\(v\) :

Height velocity (m s−1)

\(V\) :

Dimensionless y velocity (–)

\(w\) :

Weight coefficient (–)

\(x\) :

Position (m)

\(X\) :

Dimensionless coordinate (–)

\(y\) :

Position (m)

\(Y\) :

Dimensionless coordinate (–)

\(\alpha\) :

Thermal diffusivity coefficient (m2 s−1)

\(\beta\) :

Extinction coefficient (m−1)

\(\Delta t\) :

Lattice time step (–)

\(\Delta x\) :

Mesh spacing (–)

\(\gamma\) :

Polar angle (rad)

\(\delta\) :

Azimuthal angle (rad)

\(\varepsilon\) :

Emissivity coefficient (–)

\(k_{\text{a}}\) :

Absorbing coefficient (–)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\nu\) :

Kinematic viscosity (m2 s−1)

\(\rho\) :

Density (kg m−3)

\(\sigma\) :

Stefan–Boltzmann constant (W k−4 m−2)

\(\sigma_{\text{s}}\) :

Scattering coefficient (m−1)

\(\tau\) :

Dimensionless relaxation time (–)

\(\omega\) :

Scattering albedo (–)

\(\varOmega\) :

Direction \((\delta ,\gamma )\)

\(\Delta \varOmega\) :

Solid angle (sr)

\(\theta\) :

Dimensionless temperature (–)

\(b\) :

Black body (–)

\(i\) :

Discrete velocity direction (–)

w:

Wall (–)

o:

Inter value (–)

m:

Mean value (–)

eq:

Equilibrium (–)

*:

After collision

References

  1. Asadollahi A, Rashidi S, Esfahani JA (2016) Condensation process and phase-change in the presence of obstacles inside a minichannel. Meccanica. doi:10.1007/s11012-016-0588-7

    Google Scholar 

  2. Ghafouri A, Hassanzadeh A (2016) Numerical study of red blood cell motion and deformation through a michrochannel using lattice Boltzmann-immersed boundary method. J Braz Soc Mech Sci Eng 1:1–10

    Google Scholar 

  3. Philippi PC, Siebert DN, Hegele LA Jr, Mattila KK (2016) High-order lattice-Boltzmann. J Braz Soc Mech Sci Eng 38(5):1401–1419

    Article  Google Scholar 

  4. Chawla T, Chan S (1980) Combined radiation convection in thermally developing Poiseuille flow with scattering. J Heat Transf 102(2):297–302

    Article  Google Scholar 

  5. Azad F, Modest M (1981) Combined radiation and convection in absorbing, emitting and anisotropically scattering gas-particulate tube flow. Int J Heat Mass Transf 24(10):1681–1698

    Article  MATH  Google Scholar 

  6. Talukdar P, Simonson CJ (2007) Effect of axial radiation on heat transfer in a thermally and hydrodynamically developing flow between parallel plates. Numer Heat Transf 52(10):911–934

    Article  Google Scholar 

  7. Sediki E, Soufiani A, Sifaoui MS (2003) Combined gas radiation and laminar mixed convection in vertical circular tubes. Int J Heat Fluid Flow 24(5):736–746

    Article  MATH  Google Scholar 

  8. Atashafrooz M, Nassab G (2012) Numerical analysis of laminar forced convection recess flow with two inclined steps considering gas radiation effect. Comput Fluids 66:167–176

    Article  MathSciNet  MATH  Google Scholar 

  9. Zheng B, Lin C, Ebadian M (2000) Combined laminar forced convection and thermal radiation in a helical pipe. Int J Heat Mass Transf 43(7):1067–1107

    Article  MATH  Google Scholar 

  10. Dehghan M, Rahmani Y, Ganji DD, Saedodin S, Valipour MS, Rashidi S (2015) Convection–radiation heat transfer in solar heat exchangers filled with a porous medium homotopy perturbation method versus numerical analysis. Renew Energy 74:448–455

    Article  Google Scholar 

  11. Dehghan M, Mahmoudi Y, Valipour MS, Saedodin S (2015) Combined conduction–convection–radiation heat transfer of slip flow inside a micro-channel filled with a porous material. Transp Porous Media 108(2):413–436

    Article  Google Scholar 

  12. Rashidi S, Bovand M, Esfahani JA (2015) Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis. Energy Convers Manag 103:726–738

    Article  Google Scholar 

  13. Liu Q, He YL (2017) Lattice Boltzmann simulations of convection heat transfer in porous media. Physica A 465:742–773

    Article  MathSciNet  Google Scholar 

  14. Sheikholeslami M, Gorji Bandpy M, Ashorynejad HR (2015) Lattice Boltzmann method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity. Physica A 432:58–70

    Article  Google Scholar 

  15. Asinari P, Mishra SC, Borchiellini R (2010) A lattice Boltzmann formulation for the analysis of radiative heat transfer problems in a participating medium. Numer Heat Transf 57(2):126–146

    Article  Google Scholar 

  16. Mishra SC, Poonia H, Vernekar RR, Das AK (2014) Lattice Boltzmann method applied to radiative transport analysis in a planar participating medium. Heat Transf Eng 35(14–15):1267–1278

    Article  Google Scholar 

  17. Mishra SC, Vernekar RR (2012) Analysis of transport of collimated radiation in a participating media using the lattice Boltzmann method. J Quant Spectrosc Radiat Transf 113(16):2088–2099

    Article  Google Scholar 

  18. Das R, Mishra SC, Uppaluri R (2008) Multiparameter estimation in a transient conduction–radiation problem using the lattice Boltzmann method and the finite-volume method coupled with the genetic algorithms. Numer Heat Transf 53(12):1321–1338

    Article  Google Scholar 

  19. Maroufi A, Aghanajafi C (2013) Analysis of conduction–radiation heat transfer during phase change process of semitransparent materials using lattice Boltzmann method. J Quant Spectrosc Radiat Transf 116:145–155

    Article  Google Scholar 

  20. Vernekar RR, Mishra SC (2014) Analysis of transport of short-pulse radiation in a participating medium using lattice Boltzmann method. Int J Heat Mass Transf 77:218–229

    Article  Google Scholar 

  21. Mink A, Thäter G, Nirschl H, Krause MJ (2016) A 3D lattice Boltzmann method for light simulation in participating media. J Comput Sci 17:431–437

    Article  MathSciNet  Google Scholar 

  22. Howell JR, Menguc MP, Siegel R (2011) Thermal radiation heat transfer, 5th edn. CRC Press

  23. Modest M (2003) Radiative heat transfer, 2nd edn. Elsevier

  24. Mohamad AA (2011) Lattice Boltzmann method: fundamentals and engineering applications with computer codes. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  25. Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9:1591–1598

    Article  MathSciNet  MATH  Google Scholar 

  26. Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press, Oxford

    MATH  Google Scholar 

  27. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30(1):329–364

    Article  MathSciNet  Google Scholar 

  28. D’Orazio A, Succi S (2004) Simulating two-dimensional thermal channel flows by means of a lattice Boltzmann method with new boundary conditions. Future Gener Comput Syst 20(6):935–944

    Article  Google Scholar 

  29. Tang G, Tao W, He Y (2003) Simulation of fluid flow and heat transfer in a plane channel using the lattice Boltzmann method. Int J Modern Phys 17(2):183–187

    Article  Google Scholar 

  30. Inamuro T, Yoshino M, Ogino F (1994) A non-slip boundary condition for lattice Boltzmann simulations. Phys Fluids 7(12):2928–2930

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Abolfazli Esfahani.

Additional information

Technical Editor: Francis HR Franca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, R., Rashidi, S. & Esfahani, J.A. A lattice Boltzmann method to simulate combined radiation–force convection heat transfer mode. J Braz. Soc. Mech. Sci. Eng. 39, 3695–3706 (2017). https://doi.org/10.1007/s40430-017-0831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0831-8

Keywords

Navigation