Skip to main content
Log in

Emerging application of nanoparticle-enriched cutting fluid in metal removal processes: a review

  • Review Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In metal removal processes, the role of cooling and lubricating fluid is very crucial for improving the performance of machining. When metallic and non-metallic nanoparticles (less than 100 nm) are added to the base fluid, it is termed as a nanofluid. Due to excellent heat-carrying capacity, lubrication and rheological properties, nanofluids have gained immense importance for growing research activities. Researchers are also exploring synthesis and newer application of nanofluids. In the process, scientists are trying to develop new types of nano-cutting fluids, which are economic and eco-friendly. In this connection, investigations are also underway to find out possible mechanisms for improving cooling and lubricating properties of nanofluids. This paper presents a summary of published literature on the application of nano-enriched cutting fluid in various conventional metal removal processes, such as turning, milling, drilling and grinding. This paper also discusses the effects of different nano-enriched cutting fluids on various metal removal processes and factors influencing their process performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

d :

Depth of cut

f :

Feed rate

Fc:

Cutting force

Ra:

Average surface roughness

t :

Cutting time

AFM:

Atomic force microscopy

ANOVA:

Analysis of variance

CA:

Compressed air

CBN:

Cubic boron nitride

CNT:

Carbon nanotube

EDS:

Energy dispersive X-ray spectroscopy

EG:

Ethylene glycol

FDA:

Fractal dimensional analysis

FE-SEM:

Field emission scanning electron microscope

GA:

Genetic algorithm

GF:

Graphite fibre

GnP:

Graphite nanoplatelets

G-ratio:

Grinding ratio

IPA:

Isopropyl alcohol

MQL:

Minimum quantity lubrication

MRR:

Material removal rate

MWCNT:

Multi-walled carbon nanotube

NBA:

Nano-boric acid

ND:

Nanodiamond

PEG:

Percentage of polyethylene glycol

RSM:

Response surface methodology

SWCNT:

Single-walled carbon nanotube

S/N:

Signal to noise

SEM:

Scanning electron microscopy

xGnP:

Exfoliated graphite nanoplatelets

References

  1. Smalley R (2005) Future global energy prosperity: the terawatt challenge. MRS Bull 30:412–417

    Article  Google Scholar 

  2. DeGarmo EP, Black JT, Kohser RA (2008) DeGarmo’s Materials and Process in manufacturing. Fundamentals of Machining/Orthogonal Machining Fundamentals of Machining/Orthogonal Machining 10th edn. Wiley, New York, pp 523–559

  3. Shokoohi Y, Khosrojerdi E, Shiadhi BHR (2015) Machining and ecological effects of a new developed cutting fluid in combination with different cooling techniques on turning operation. J Clean Prod 94:330–339

    Article  Google Scholar 

  4. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the ASME International Mechanical Engineering Congress and Exposition San Francisco, CA, USA

  5. CEA (2007) Nanofluids for heat transfer applications. Marketing Study Unit, France

    Google Scholar 

  6. Davim JP, Gaitonde VN, Karnik SR (2008) Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. J Mater Process Technol 205(1–3):16–23

    Article  Google Scholar 

  7. Vieira JM, Machado AR, Ezugwu EO (2001) Performance of cutting fluids during face milling of steels. J Mater Process Technol 116(2–3):244–251

    Article  Google Scholar 

  8. Dhar NR, Islam MW, Islam S, Mithu MAH (2006) The influence of minimum quantity lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. J Mater Process Technol 171:93–99

    Article  Google Scholar 

  9. Weinert K, Inasaki I, Sutherland JW, Wakabayashi T (2005) Dry machining and minimum quantity lubrication. CIRP Ann Manuf Technol 53(2):511–537

    Article  Google Scholar 

  10. Sreejith PS, Ngoi BKA (2000) Dry machining: machining of the future. J Mater Process Technol 101(1–3):287–291

    Article  Google Scholar 

  11. Granger C (1994) Dry machining’s double benefit. Mach Prod Eng 152(3873):14–20

    Google Scholar 

  12. Jianxin D, Jiantou Z, Hui Z, Pei Y (2011) Wear mechanisms of cemented carbide tools in dry cutting of precipitation hardening semi-austenitic stainless steels. Wear 270(7–8):520–527

    Article  Google Scholar 

  13. Diniz AE, Micaroni R (2002) Cutting conditions for finish turning process aiming the use of dry cutting. Int J Mach Tool Manuf 42(8):899–904

    Article  Google Scholar 

  14. Diniz AE, Oliveira AJ (2004) Optimizing the use of dry cutting in rough turning steel operations. Int J Mach Tool Manuf 44(10):1061–1067

    Article  Google Scholar 

  15. Braga DU, Diniz AE, Miranda GWA, Coppini NL (2002) Using a minimum quantity of lubricant (MQL) and a diamond coated tool in the drilling of aluminum-silicon alloys. J Mater Process Technol 122(1):127–138

    Article  Google Scholar 

  16. Gunter KL, Sutherland JW (1999) An experimental investigation into the effect of process conditions on the mass concentration of cutting fluid mist in turning. J Clean Prod 7(5):341–350

    Article  Google Scholar 

  17. Dhar NR, Ahmed MT, Islam S (2007) An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. Int J Mach Tool Manuf 47(5):748–753

    Article  Google Scholar 

  18. Li KM, Liang SY (2007) Performance profiling of minimum quantity lubrication in machining. Int J Adv Manuf Technol 35(3):226–233

    Article  MathSciNet  Google Scholar 

  19. Khan MMA, Mithu MAH, Dhar NR (2009) Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. J Mater Process Technol 209(15–16):5573–5583

    Article  Google Scholar 

  20. Kishawy HA, Dumitrescu M, Ng EG, Elbestawi MA (2005) Effect of coolant strategy on tool performance, chip morphology and surface quality during high speed machining of A-356 aluminum alloy. Int J Mach Tool Manuf 45(2):219–227

    Article  Google Scholar 

  21. Tasdelen B, Wikblom T, Ekered S (2008) Studies on minimum quantity lubrication (MQL) and air cooling at drilling. J Mater Process Technol 200(1–3):339–346

    Article  Google Scholar 

  22. Heinemann R, Hinduja S, Barrow G, Petuelli G (2006) Effect of MQL on the tool life of small twist drills in deep-hole drilling. Int J Mach Tool Manuf 46(1):1–6

    Article  Google Scholar 

  23. Tawakoli T, Hadad MJ, Sadeghi MH (2010) Influence of oil mist parameters on minimum quantity lubrication–MQL grinding process. Int J Mach Tool Manuf 50(6):521–531

    Article  Google Scholar 

  24. Li KM, Lin CP (2012) Study on minimum quantity lubrication in micro-grinding. Int J Mach Tool Manuf 62(1):99–105

    Article  Google Scholar 

  25. Rabiei F, Rahimi AR, Hadad MJ, Ashrafijou M (2015) Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modeling and optimization. J Clean Prod 86:447–460

    Article  Google Scholar 

  26. Hadad M, Sadeghi B (2013) Minimum quantity lubrication-MQL turning of AISI4140 steel alloy. J Clean Prod 54:332–343

    Article  Google Scholar 

  27. Zhang S, Li JF, Wang YW (2012) Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. J Clean Prod 32:81–87

    Article  Google Scholar 

  28. Li KM, Chou SY (2010) Experimental evaluation of minimum quantity lubrication in near micro-milling. J Mater Process Technol 210(15):2163–2170

    Article  Google Scholar 

  29. Emami M, Sadeghi MH, Shrhan AAD (2013) Investigating the effects of liquid atomization and delivery parameters of minimum quantity lubrication on the grinding process of Al2O3 engineering ceramics. J Manuf Process 15(3):374–388

    Article  Google Scholar 

  30. Davim JP, Sreejith PS, Silva J (2007) Turning of brasses using minimum quantity of lubricant (MQL) and flooded lubricant conditions. Mater Manuf Process 22(1):45–50

    Article  Google Scholar 

  31. Verma SK, Tiwari AK (2015) Progress of nanofluid application in solar collectors: a review. Energ Convers Manage 100:324–346

    Article  Google Scholar 

  32. Wenhua Yu, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng 29(5):432–460

    Article  Google Scholar 

  33. Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev 11(5):797–817

    Article  Google Scholar 

  34. Sadik K, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52(13–14):3187–3196

    MATH  Google Scholar 

  35. Saidur R, Leong KY, Mohammad HA (2011) A review on applications and challenges of nanofluids. Renew Sustain Energy Rev 15(3):1646–1668

    Article  Google Scholar 

  36. Sarkar S, Ghosh P, Adil A (2015) A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev 43:164–177

    Article  Google Scholar 

  37. Sharma AK, Tiwari AK, Dixit AR (2015) Progress of nanofluids application in machining: a review. Mater Manuf Process 16(7):813–828

    Article  Google Scholar 

  38. Haoran L, Li W, He Yurong H, Yanwei ZJ, Jiang B (2015) Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Appl Therm Eng 88:363–368

    Article  Google Scholar 

  39. Kavita S, Babu JSC (2015) Factors influencing the rheological behavior of carbon nanotube water-based nanofluid. Fullerenes, Nanotubes, Carbon Nanostruct 23(8):750–754

    Article  Google Scholar 

  40. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    Article  Google Scholar 

  41. Xing M, Jianlin Yu, Wang R (2015) Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. Int J Heat Mass Transf 88:609–616

    Article  Google Scholar 

  42. Liu MS, Lin MCC, Tsai CY, Wang CC (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method Int J. Heat Mass Transf 49(17–18):3028–3033

    Article  Google Scholar 

  43. Khedkar RS, Sonawane SS, Wasewar KL (2012) Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol-based nanofluids. Int Commun Heat Mass 39:665–669

    Article  Google Scholar 

  44. Kotia A, Haldar A, Kumar R, Deval P, Ghosh SK (2017) Effect of copper oxide nanoparticles on thermophysical properties of hydraulic oil-based nanolubricants. Braz Soc Mech Sci Eng 39(1):259–266

    Article  Google Scholar 

  45. Alimirzaloo V, SheydayiGurchinQaleh S, MashhadiKeshtiban P, Ahmadi S (2017) Investigation of the effect of CuO and Al2O3 nanolubricants on the surface roughness in the forging process of aluminum alloy. P I Mech Eng J-J Eng Tribol 208–210:1–10

    Google Scholar 

  46. Esfe MH, Saedodin S, Akbari M, Karimipour A, Afrand M, Wongwises S, Safaei MR, Dahari M (2015) Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid. Int Commun Heat Mass 65:47–51

    Article  Google Scholar 

  47. Yoo DH, Hong KS, Yang HS (2007) Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim Acta 455(1–2):66–69

    Article  Google Scholar 

  48. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44(4):367–373

    Article  Google Scholar 

  49. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50(11–12):2272–2281

    Article  MATH  Google Scholar 

  50. Hajjar Z, Rashidi AM, Ghozatloo A (2014) Enhanced thermal conductivities of graphene oxide nanofluids. Int Commun Heat Mass 57:128–131

    Article  Google Scholar 

  51. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252–2254

    Article  Google Scholar 

  52. Vajjha RS, Das DK (2012) A review and analysis on influence of temperature and concentration of nanofluids on thermo physical properties, heat transfer and pumping power. Int J Heat Mass Transf 55(15–16):4063–4078

    Article  Google Scholar 

  53. Qiang L, Yimin X (2002) Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci China, Ser E 45(4):408–416

    Google Scholar 

  54. Chon CH, Kihm KD, Lee SP, Choi SU (2005) Empirical correlation finding the role of temperature and particle size for nanofluid Al2O3 thermal conductivity. Appl Phys Lett 87(15):152107

    Article  Google Scholar 

  55. Marquis FDS, Chibante LPF (2005) Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes. Res Summary Carbon Nanotubes, JOM 57(12):32–43

    Google Scholar 

  56. Agarwal R, Verma K, Agrawal NK, Duchaniya RK, Singh R (2016) Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl Therm Eng 102:1024–1036

    Article  Google Scholar 

  57. Syam Sundar L, Manoj Singh K, Venkata Ramana E, Budhendra Singh, Jose Gracio, Sousa ACM (2014) Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. J Sci Rep 4:4039

    Google Scholar 

  58. Yang Y (2006) Carbon nanofluids for lubricant application. PhD thesis, University of Kentucky, Lexington, KY

  59. Xiaoke Li, ZouChangjun Lei Xinyu, Wenliang Li (2015) Stability and enhanced thermal conductivity of ethylene glycol-based SiC nanofluids. Int J Heat Mass Transf 89:613–619

    Article  Google Scholar 

  60. Xing Li, Ying Chen, Songping Mo, Lisi Jia, Xuefeng Shao (2014) Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid. Thermochim Acta 595:6–10

    Article  Google Scholar 

  61. Yang Y, Grulke EA, Zhang ZG, Wu G (2006) Thermal and rheological properties of carbon nanotube-in-oil dispersions. J Appl Phys 99(11):114307

    Article  Google Scholar 

  62. Sharma AK, Tiwari AK, Dixit AR (2016) Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a review. J Clean Prod 127:1–18

    Article  Google Scholar 

  63. Dekhordi BL, Kazi SN, Hamdi M, Ghadimi A, Sadeghinezhad E, Metselaar HSC (2013) Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Int J Heat Mass Transf 49(8):1109–1115

    Article  Google Scholar 

  64. Murshed SMS, Leong KC, Yang C (2008) Investigation of thermal conductivity and viscosity of nano fluids. Int J Therm Sci 47:560–568

    Article  Google Scholar 

  65. Mariano A, Pastoriza-Gallego MJ, Luis Lugo, Alberto Camacho, Salvador Canzonieri, Pineiro MM (2013) Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids. Fluid Phase Equilib 337:119–124

    Article  Google Scholar 

  66. Haitao Z, Changjiang L, Daxiong W, Ying ZC, Yansheng Y (2010) Preparation, Characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids. Sci China Technol Sci 53(2):360–368

    Article  Google Scholar 

  67. Haifeng Jiang, Hui Li, Cheng Zan, Fuqiang Wang, Qianpeng Yang, Lin Shi (2014) Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid. Thermochim Acta 579:27–30

    Article  Google Scholar 

  68. Chen H, Yang W, He Y, Ding Y, Zhang L, Tan C, Lapkin AA, Bavykin DV (2008) Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids). Powder Technol 183(1):63–72

    Article  Google Scholar 

  69. Cabaleiro D, Gracia-Fernandez C, Legido JL, Lugo L (2015) Specific heat of metal-oxide nanofluids at high concentrations for heat transfer. Int J Heat Mass Transf 88:872–879

    Article  Google Scholar 

  70. Turgut A, Tavman I, Chirtoc M, Schuchmann HP, Sauter C, Tavman S (2009) Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. Int J Thermophys 30(4):1213–1226

    Article  Google Scholar 

  71. Peng DX, Kang Y, Hwang RM, Shyr SS, Chang YP (2009) Tribological properties of diamond and SiO2 nanoparticles added in paraffin. Tribol Int 42(6):911–917

    Article  Google Scholar 

  72. Phuoc TX, Massoudi M, Chen RH (2011) Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci 50(1):12–18

    Article  Google Scholar 

  73. Nasiri A, Shariaty-Niasar M, Rashidi AM, Khodafarin R (2012) Effect of CNT structures on thermal conductivity and stability of nanofluid. Int J Heat Mass Transf 55(5–6):1529–1535

    Article  Google Scholar 

  74. Ettefaghi E, Rashidi A, Ahmadi H, Mohtasebi SS, Pourkhalil M (2013) Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures. Int Commun Heat Mass 48:178–182

    Article  Google Scholar 

  75. Mariano A, Pastoriza-Gallego MJ, Luis Lugo, Lelia Mussari, Pineiro MM (2015) Co3O4 ethylene glycol-based nanofluids: thermal conductivity, viscosity and high pressure density. Int J Heat Mass Transf 85:54–60

    Article  Google Scholar 

  76. Yu W, Xie H, Chen L, Li Y (2009) Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim Acta 491(1–2):92–96

    Article  Google Scholar 

  77. Ariana MA, Vaferi B, Karimi G (2015) Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks. Powder Technol 278:1–10

    Article  Google Scholar 

  78. Sidik NAC, Samion S, Ghaderian J (2017) Recent progress on the application of nanofluids in minimum quantity. lubrication machining: a review. Int J Heat Mass Transf 108:79–89

    Article  Google Scholar 

  79. Syam Sundar L, Ramana EV, Singh KM, Sousa ACM (2014) Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. Int Commun Heat Mass 56:86–95

    Article  Google Scholar 

  80. Pastoriza-Gallego MJ, Lugo L, Legido JL, Pineiro MM (2011) Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids. Nanoscale Res Lett 6(1):1–11

    Google Scholar 

  81. Guodong Xia, Huanming Jiang, Ran Liu, Yuling Zhai (2014) Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. Int J Therm Sci 84:118–124

    Article  Google Scholar 

  82. Saedinia M, Akhavan-Behabadi MA, Razi P (2012) Thermal and rheological characteristics of CuO-base oil nanofluid flow inside a circular tube. Int Commun Heat Mass 39(1):152–159

    Article  Google Scholar 

  83. Amir Karimi, Afghahi S, Salman S, Hamed Shariatmadar, Mehdi Ashjaee (2014) Experimental investigation on thermal conductivity of MFe2O4 (M = Fe and Co) magnetic nanofluids under influence of magnetic field. Thermochim Acta 598:59–67

    Article  Google Scholar 

  84. Mehrali M, Sadeghinezhad E, Latibari ST, Kazi SN, Mehrali M, Zubir MNB, Metselaar HSC (2014) Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett 9(1):1–12

    Article  Google Scholar 

  85. Sharma AK, Tiwari AK, Dixit AR (2016) Rheological behaviour of nanofluids: a review. Renew Sustain Energy Rev 53:779–791

    Article  Google Scholar 

  86. Wu YY, Tsui WC, Liu TC (2007) Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262(7–8):819–825

    Article  Google Scholar 

  87. Lee CG, Hwang YJ, Choi YM, Lee JK, Choi C, Oh JM (2009) A study on the tribological characteristics of graphite nano lubricants. Int J Precis Eng Manuf 10(1):85–90

    Article  Google Scholar 

  88. Chuanli Zhao, Chen YK, Ren G (2013) A study of tribological properties of water-based ceria nanofluids. Tribol T 56(2):275–283

    Article  Google Scholar 

  89. Laura Pena-Paras, Jaime Taha-Tijerina, Lorena Garza, Demofilo Maldonado-Cortes, Remigiusz Michalczewski, Carolina Lapray (2015) Effect of CuO and Al2O3 nanoparticle additives on the tribological behaviour of fully formulated oils. Wear 332–333:1256–1261

    Google Scholar 

  90. Reddy NSK, Rao PV (2006) Experimental investigation to study the effect of solid lubricants on cutting forces and surface quality in end milling. Int J Mach Tool Manuf 46(2):189–198

    Article  Google Scholar 

  91. Hu ZS, Lai R, Lou F, Wang LG, Chen ZL, Chen GX, Dong JX (2002) Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear 252(5–6):370–374

    Article  Google Scholar 

  92. Celik YH (2014) Investigating the effects of cutting parameters on the hole quality in drilling the Ti-6Al-4 V alloy. Mater Technol 48(5):653–659

    Google Scholar 

  93. Celik YH, Yildiz H, Ozek C (2016) Effect of cutting parameters on workpiece and tool properties during drilling of Ti-6Al-4V. Mater Testing 58(6):519–525

    Article  Google Scholar 

  94. Mathew NT, Vijayaraghavan L (2017) Environmentally friendly drilling of intermetallic titanium aluminide at different aspect ratio. J Clean Prod 141:439–452

    Article  Google Scholar 

  95. Kilickap E, Huseyinoglu M, Ozel C (2011) Empirical study regarding the effects of minimum quantity lubricant utilization on performance characteristics in the drilling of Al 7075. J Braz Soc Mech Sci Eng 33(1):52–58

    Article  Google Scholar 

  96. Nam JS, Lee PH, Lee SW (2011) Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication. Int J Mach Tool Manuf 51(7–8):649–652

    Article  Google Scholar 

  97. Huang Wei-Tai Wu, Der-Ho Chen Jian-Ting (2015) Robust design of using nanofluid/MQL in micro-drilling. Int J Adv Manuf Technol 85(9):2155–2161

    Google Scholar 

  98. Nam JS, Kim DH, Haseung Chung, Lee SW (2015) Optimization of environmentally benign micro-drilling process with nanofluid minimum quantity lubrication using response surface methodology and genetic algorithm. J Clean Prod 102:428–436

    Article  Google Scholar 

  99. Chai YH, Yusup S, Chok VS, Arpin MT, Irawan S (2016) Investigation of thermal conductivity of multi walled carbon nanotube dispersed in hydrogenated oil based drilling fluids. Appl Therm Eng 107:1019–1025

    Article  Google Scholar 

  100. Chatha SS, Pal A, Singh T (2016) Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication. J Clean Prod 137:537–545

    Article  Google Scholar 

  101. Garg A, Sarma S, Panda BN, Zhang J, Gao L (2016) Study of effect of nanofluid concentration on response characteristics of machining process for cleaner production. J Clean Prod 135:476–489

    Article  Google Scholar 

  102. Mosleh M, Ghaderi M, Shirvani KA, Belk J, Grzina DJ (2017) Performance of cutting nanofluids in tribological testing and conventional drilling. J Manuf Process 25:70–76

    Article  Google Scholar 

  103. Salimi-Yasara H, Heris SZ, Shanbedi M, Amiri A, Kameli A (2017) Experimental investigation of thermal properties of cutting fluid using soluble oil-based TiO2 nanofluid. Powder Technol 310:213–220

    Article  Google Scholar 

  104. Salimi-Yasara H, Heris SZ, Shanbedi M (2017) Influence of soluble oil-based TiO2 nanofluid on heat transfer performance of cutting fluid. Tribol Int 112:147–154

    Article  Google Scholar 

  105. Guo S, Li C, Zhang Y, Wang Y, Li B, Yang M, Zhang X, Liu G (2017) Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J Clean Prod 140:1060–1076

    Article  Google Scholar 

  106. Shen B, Shih AJ, Tung SC (2008) Application of Nanofluids in Minimum Quantity Lubrication Grinding. Tribol T 51(6):730–737

    Article  Google Scholar 

  107. Shen B, Malshe AP, Kalita P, Shih AJ (2008) Performance of novel MoS2 nanoparticles based grinding fluids in minimum quantity lubrication grinding. Trans North American Manuf Res Inst SME 36:357–364

    Google Scholar 

  108. Alberts M, Kalaitzidou K, Melkote S (2009) An investigation of graphite nanoplatelets as lubricant in grinding. Int J Mach Tool Manuf 49(12–13):966–970

    Article  Google Scholar 

  109. Kalita P, Malshe Ajay P, Wenping Jiang, Shih Albert J (2010) Tribological study of nano lubricant integrated soybean oil for minimum quantity lubrication (MQL) grinding. Trans NAMRI/SME 38:137–144

    Google Scholar 

  110. Prabhu S, Vinayagam BK (2010) Nano surface generation of grinding process using carbon nano tubes. Sadhana 35(6):747–760

    Article  Google Scholar 

  111. Vasu V, Manoj Kumar K (2011) Analysis of nanofluids as cutting fluid in grinding EN-31 steel. Nano-Micro Lett 3(4):209–214

    Article  Google Scholar 

  112. Prabhu S, Vinayagam BK (2011) Fractal dimensional surface analysis of AISI D2 tool steel material with nanofluids in grinding process using atomic force microscopy. J Braz Soc Mech Sci Eng 33(4):459–466

    Article  Google Scholar 

  113. Prabhu S, Vinayagam BK (2012) AFM investigation in grinding process with nanofluids using Taguchi analysis. Int J Adv Manuf Technol 60(1):149–160

    Article  Google Scholar 

  114. Lee PH, Nam JS, Li C, Lee SW (2012) An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). Int J Precis Eng Manuf 13(3):331–338

    Article  Google Scholar 

  115. Mao C, Tang X, Zou H, Huang X, Zhou Z (2012) Investigation of grinding characteristic using nanofluid minimum quantity lubrication. Int J Precis Eng Manuf 13(10):1745–1752

    Article  Google Scholar 

  116. Kalita P, Malshe AP, Kumar SA, Yoganath VG, Gurumurthy T (2012) Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. J Manuf Process 14(2):160–166

    Article  Google Scholar 

  117. Kalita P, Malshe AP, Rajurkar KP (2012) Study of tribo-chemical lubricant film formation during application of nanolubricants in minimum quantity lubrication (MQL) grinding. CIRP Ann Manuf Technol 61(1):327–330

    Article  Google Scholar 

  118. Mao C, Zou H, Huang X, Zhang J, Zhou Z (2013) The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication. Int J Adv Manuf Technol 64(9):1791–1799

    Article  Google Scholar 

  119. Prabhu S, Vinayagam BK (2013) Analysis of surface characteristics by electrolytic in-process dressing (ELID) technique for grinding process using single-wall carbon nano tube-based nanofluids. Arab J Sci Eng 38(5):1169–1178

    Article  Google Scholar 

  120. Mao C, Zhang J, Huang Y, Zou H, Huang X, Zhou Z (2013) Investigation on the effect of nanofluid parameters on MQL grinding. Mater Manuf Process 28(4):436–442

    Article  Google Scholar 

  121. Li CH, Li JY, Wang S, Zhang Q (2013) Modeling and numerical simulation of the grinding temperature field with nanoparticle jet of MQL. Adv Mech Eng 9Article ID 986984

  122. Mao C, Hongfu Zou, Xin Zhou, Huang Y, Hangyu Gan, Zhou Z (2014) Analysis of suspension stability for nanofluid applied in minimum quantity lubricant grinding. Int J Adv Manuf Technol 71(9):2073–2081

    Article  Google Scholar 

  123. Dongzhou Jia, Changhe Li, Dongkun Zhang, Yanbin Zhang, Xiaowei Zhang (2014) Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. J Nanoparticle Res 16(12):1–15

    Google Scholar 

  124. Sheng Wang, Changhe Li, Dongkun Zhang, Dongzhou Jia, Yanbin Zhang (2014) Modeling the operation of a common grinding wheel with nanoparticle jet flow minimal quantity lubrication. Int J Adv Manuf Technol 74(5–8):835–850

    Google Scholar 

  125. Manoj Kumar K, Amitava Ghosh (2014) Synthesis of MWCNT nanofluid and evaluation of its potential besides soluble oil as micro cooling-lubrication medium in SQL grinding. Int J Adv Manuf Technol 77(9–12):1955–1964

    Google Scholar 

  126. Cong Mao, Yong Huang, Xin Zhou, Hangyu Gan, Jian Zhang, Zhixiong Zhou (2014) The tribological properties of nanofluid used in minimum quantity lubrication grinding. Int J Adv Manuf Technol 71(5–8):1221–1228

    Google Scholar 

  127. Yanbin Zhang, Changhe Li, Dongzhou Jia, Dongkun Zhang, Xiaowei Zhang (2015) Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. J Clean Prod 87:930–940

    Article  Google Scholar 

  128. Dongkun Zhang, Changhe Li, Yanbin Zhang, Dongzhou Jia, Xiaowei Zhang (2015) Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding. Int J Adv Manuf Technol 78(5–8):1275–1288

    Google Scholar 

  129. Dinesh Setti, Kumar Sinha Manoj, Sudarshan Ghosh, Venkateswara Rao P (2015) Performance evaluation of Ti–6Al–4 V grinding using chip formation and coefficient of friction under the influence of nanofluids. Int J Mach Tool Manuf 88:237–248

    Article  Google Scholar 

  130. Dongkun Zhang, Changhe Li, Dongzhou Jia, Yanbin Zhang, Xiaowei Zhang (2015) Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding. Chinese J Aeronaut 28(1):570–581

    Google Scholar 

  131. Prabhu S, Uma M, Vinayagam BK (2015) Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process. Neural Comp Appl 26(1):41–55

    Article  Google Scholar 

  132. Zhang Y, Li C, Jia D, Li B, Wang Y, Yang M, Hou Y, Zhang X (2016) Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J Mater Process Technol 232:100–115

    Article  Google Scholar 

  133. Li B, Li C, Zhang Y, Wang Y, Yang M, Jia D, Zhang N, Wu Q (2016) Effect of the physical properties of different vegetable oil-based nanofluids on MQLC grinding temperature of Ni-based alloy. Int J Adv Manuf Technol 89(9):3459–3474

    Google Scholar 

  134. Wang Y, Li C, Zhang Y, Yang M, Zhang X, Zhang N, Dai J (2017) Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubrication grinding with different concentrations of Al2O3 nanofluids. J Clean Prod 142:3571–3583

    Article  Google Scholar 

  135. Sinha MK, Madarkar RK, Ghosh S, Rao PV (2017) Application of eco-friendly nanofluids during grinding of Inconel 718 through small quantity lubrication. J Clean Prod 141:1359–1375

    Article  Google Scholar 

  136. Wang Y, Li C, Zhang Y, Li B, Yang M, Zhang X, Guo S, Liu G, Zhai M (2017) Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment. J Manuf Process 26:94–104

    Article  Google Scholar 

  137. Li B, Li C, Zhang Y, Wang Y, Jia D, Yang M, Zhang N, Wu Q, Han Z, Sun K (2017) Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. J Clean Prod 154:1–11

    Article  Google Scholar 

  138. Park KH, Ewald B, Kwon PY (2011) Effect of nano-enhanced lubricant in minimum quantity lubrication balling milling. J Tribol 133(031803):1–8

    Google Scholar 

  139. Sarhan AAD, Sayuti M, Hamdi M (2012) Reduction of power and lubricant oil consumption in milling process using a new SiO2 nanolubrication system. Int J Adv Manuf Technol 63(5–8):505–512

    Article  Google Scholar 

  140. Sayuti M, Sarhan AAD, Hamdi M (2013) An investigation of optimum SiO2 nanolubrication parameters in end milling of aerospace Al6061-T6 alloy. Int J Adv Manuf Technol 67:833–849

    Article  Google Scholar 

  141. Sayuti M, Sarhan AAD, Tanaka T, Hamdi M, Saito Y (2013) Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL-2017-T4 using carbon anion nanolubrication system. Int J Adv Manuf Technol 65:1493–1500

    Article  Google Scholar 

  142. Rahmati B, Sarhan AAD, Sayuti M (2014) Investigating the optimum molybdenum disulfide (MoS2) nanolubrication parameters in CNC milling of AL6061-T6 alloy. Int J Adv Manuf Technol 70(5–8):1143–1155

    Article  Google Scholar 

  143. Sayuti M, Erh OM, Sarhan AAD, Hamdi M (2013) Investigation on the morphology of the machined surface in end milling of aerospace AL6061-T6 for novel uses of SiO2 nanolubrication system. J Clean Prod 66:655–663

    Article  Google Scholar 

  144. Rahmati B, Sarhan AAD, Sayuti M (2013) Morphology of surface generated by end milling AL6061-T6 using molybdenum disulphide (MoS2) nanolubrication in end milling machining. J Clean Prod 66:685–691

    Article  Google Scholar 

  145. Khalil ANM, Azmi AI, Ali MAM (2015) An initial study of the effect of minimum quantity lubricant of SiO2 nanoparticle with PEG on surface roughness during milling of mild steel. Appl Mech Mater 695:627–630

    Article  Google Scholar 

  146. Najiha MS, Rahman MM, Yusoff AR (2015) Flank wear characterization in aluminum alloy (6061 T6) with nanofluid MQL environment using uncoated carbide tool. J Manuf Sci Eng 1–27

  147. Najiha MS, Rahman MM (2016) Experimental investigation of flank wear in end milling of aluminum alloy with water-based TiO2 nanofluid lubricant in minimum quantity lubrication technique. Int J Adv Manuf Technol 86(9):2527–2537

    Article  Google Scholar 

  148. Najiha MS, Rahman MM, Kadirgama K (2016) Performance of water-based TiO2 nanofluid during the minimum quantity lubrication machining of aluminium alloy, AA6061-T6. J Clean Prod 86(9):2527–2537

    Google Scholar 

  149. Kim JS, Kim JW, Kim YC Lee SW (2016) Experimental study on environmentally-friendly micro end-milling process of Ti-6Al-4 V using nanofluid minimum quantity lubrication with chilly gas. ASME 11th Int Manuf Sci Eng Conf, Blacksburg, Virginia, USA

  150. Muthusamy Y, Kadirgama K, Rahman MM, Ramasamy D, Sharma KV (2016) Wear analysis when machining AISI 304 with ethylene glycol/TIO2 nanoparticle-based coolant. Int J Adv Manuf Technol 82(1):327–340

    Article  Google Scholar 

  151. Celik YH, Kilickap E, Guney M (2017) Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti-6Al-4 V using CVD and PVD coated tools. J Braz Soc Mech Sci Eng 39(6):2085–2093

    Article  Google Scholar 

  152. Chetan Behera BC, Ghosh S, Rao PV (2016) Wear behavior of PVD-TiN coated carbide inserts during machining of Nimonic 90 and Ti6Al4 V superalloys under dry and MQL conditions. Ceram Int 42(13):14873–14885

    Article  Google Scholar 

  153. Srikant RR, Rao DN, Subrahmanyam MS, Vamsi Krishna P (2010) Applicability of cutting fluids with nanoparticle inclusion as coolants in machining. P I Mech Eng J-J Eng Tribol 223:221

    Google Scholar 

  154. Krishna PV, Srikant RR, Rao DN (2010) Experimental investigation on the performance of nanoboric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel. Int J Mach Tool Manuf 50:911–916

    Article  Google Scholar 

  155. Jiwang Yan, Zhiyu Zhang, Tsunemoto Kuriyagawa (2011) Effect of nanoparticle lubrication in diamond turning of reaction-bonded SiC. Int J Autom Technol 5(3):307–312

    Article  Google Scholar 

  156. Khandekar S, Sankar MR, Agnihotri V, Ramkumar J (2012) Nano-cutting fluid for enhancement of metal cutting performance. Mater Manuf Process 27(9):963–967

    Article  Google Scholar 

  157. Krishna P Vamsi, Srikant RR, Padmini R, Parakh Bharat (2012) Basic properties and performance of vegetable oil-based boric acid nanofluids in machining. Emerg Trends Sci Eng Technol Lect Notes Mech Eng 197–206

  158. Amrita M, Srikant RR, Sitaramaraju AV, Prasad MMS, Vamsi Krishna P (2013) Experimental investigations on influence of mist cooling using nanofluids on machining parameters in turning AISI 1040 steel. P I Mech Eng J-J Eng Tribol 227(12):1334–1346

    Google Scholar 

  159. Srikiran S, Ramji K, Satyanarayana B, Ramana SV (2013) Investigation on turning of AISI 1040 steel with the application of nano-crystalline graphite powder as lubricant. P I Mech Eng C-J Mech Eng 228(9):1570–1580

    Article  Google Scholar 

  160. Chan CY, Lee WB, Wang H (2013) Enhancement of surface finish using water-miscible nano-cutting fluid in ultra-precision turning. Int J Mach Tool Manuf 73:62–70

    Article  Google Scholar 

  161. Saravanakumar N, Prabu L, Karthik M, Rajamanickam A (2014) Experimental analysis on cutting fluid dispersed with silver nano particles. J Mech Sci Technol 28(2):645–651

    Article  Google Scholar 

  162. Amrita M, Shariq SA, Manoj Gopal Charan (2014) Experimental investigation on application of emulsifier oil based nano cutting fluids in metal cutting process. 12th Global Cong Manuf Manage Proc Eng 97:115–124

    Google Scholar 

  163. Sayuti M, Sarhan AAD, Salem F (2014) Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J Clean Prod 67:265–276

    Article  Google Scholar 

  164. Padmini R, Vamsi Krishna P, Rao GKM (2014) Performance assessment of micro and nano solid lubricant suspensions in vegetable oils during machining. P I Mech Eng B-J Eng Eng Manuf 229(12):1–9

    Google Scholar 

  165. Padmini R, Krishna PV, Rao GKM (2016) Effectiveness of vegetable oil-based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribol Int 94:490–501

    Article  Google Scholar 

  166. Amrita M, Srikant RR, Sitaramaraju AV (2014) Performance evaluation of nanographite-based cutting fluid in machining process. Mater Manuf Process 29:600–605

    Article  Google Scholar 

  167. Roy S, Ghosh A (2013) High speed turning of AISI 4140 steel using nanofluid through twin jet SQL system. ASME Int Manuf Sci Eng Conf, Madison, WI, USA, pp 1–6

  168. Gupta MK, Sood PK, Sharma VS (2016) Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. J Clean Prod 135:1276–1288

    Article  Google Scholar 

  169. Su Y, Gong L, Li B, Liu Z, Chen D (2016) Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. Int J Adv Manuf Technol 83(9):2083–2089

    Article  Google Scholar 

  170. Ali MAM, Azmi AI, Khalil ANM, Leong KW (2017) Experimental study on minimal nanolubrication with surfactant in the turning of titanium alloys. Int J Adv Manuf Technol 88:1–11

    Article  Google Scholar 

  171. Raju RA, Andhare A, Sahu NK (2017) Performance of multi-walled carbon nanotube-based nanofluid in turning operation. Mater Manuf Process 32:1–7

    Article  Google Scholar 

  172. Behera BC, Chetan Setti D, Ghosh S (2017) Spreadability studies of metal working fluids on tool surface and its impact on minimum amount cooling and lubrication turning. J Mater Process Technol 244:1–16

    Article  Google Scholar 

  173. Sidik NAC, Adamu IM, Jamil MM, Kefayati GHR, Mamat R, Najafi G (2016) Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int Commun Heat Mass 78:68–79

    Article  Google Scholar 

  174. Zhang X, Li C, Zhang Y, Jia D, Li B, Wang Y, Yang M, Hou Y, Zhang X (2016) Performances of Al2O3/SiC hybrid nanofluids in minimum-quantity lubrication grinding. Int J AdvManuf Technol 86(9):3427–3441

    Article  Google Scholar 

  175. Ahammd N, Asirvatham LG, Wongwises S (2016) Entropy generation analysis of graphene alumina hybrid nanofluid in multiport mini channel heat exchanger coupled with thermoelectric cooler. Int J Heat Mass Transf 103:1084–1097

    Article  Google Scholar 

  176. Zhang Y, Li C, Jia D, Zhang D, Zhang X (2015) Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int J Mach Tool Manuf 99:19–33

    Article  Google Scholar 

  177. Hu ZS, Lai R, Lou F, Wang LG, Chen ZL, Chen GX, Dong JX (2002) Preparation and tribological properties of nano meter magnesium borate as lubricating oil additive. Wear 252:370–374

    Article  Google Scholar 

  178. Xiaodong Z, Xun F, Huaqiang S, Zhengshui H (2007) Lubricating properties of Cyanex 302-modified MoS2 microspheres in base oil 500SN. Lubrication Sci 19:71–79

    Article  Google Scholar 

  179. Ginzburg BM, Shibaev LA, Kireenko OF, Shepelevskii AA, Baidakova MV, Sitnikova AA (2002) Anti-wear effect of fullerene C60 additives to lubricating oils. Russ J Appl Chem 75(8):1330–1335

    Article  Google Scholar 

  180. Zhou J, Yang J, Zhang Z, Liu W, Xue Q (1999) Study on the structure and tribological properties of surface-modified Cu nanoparticles. Mater Res Bull 34(9):1361–1367

    Article  Google Scholar 

  181. Rastogi RB, Yadav M, Bhattacharya A (2002) Application of molybdenum complexes of 1-aryl-2, 5-dithiohydrazodicarbonamides as extreme pressure lubricant additives. Wear 252:686–692

    Article  Google Scholar 

  182. Rapoport L, Leshchinsky V, Lvovsky M, Nepomnyashchy O, Volovik Yu, Tenne R (2002) Mechanism of friction of fullerenes. Ind Lubrication Tribol 54(4):171–176

    Article  Google Scholar 

  183. Wu YY, Tsui WC, Liu TC (2007) Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262:819–825

    Article  Google Scholar 

  184. Chinas-Castillo F, Spikes HA (2003) Mechanism of action of colloidal solid dispersions. J Tribol 125:552–557

    Article  Google Scholar 

  185. Liu G, Li X, Qin B, Xing D, Guo Y, Fan R (2004) Investigation of the mending effect and mechanism of copper nano-particles on a tribological stressed surface. Tribol Lett 17(4):961–966

    Article  Google Scholar 

  186. Tao X, Jiazheng Z, Kang X (1996) The ball-bearing effect of diamond nanoparticles as an oil additive. J Phys D Appl Phys 29:2932–2937

    Article  Google Scholar 

  187. Lee K, Hwang Y, Cheong S, Hoi Y, Kwon L, Lee J, Kim SH (2009) Understanding the role of nanoparticles in Nano oil lubrication. Tribol Lett 35:127–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabesh Kumar Singh.

Additional information

Technical Editor: Márcio Bacci da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Dixit, A.R., Mandal, A. et al. Emerging application of nanoparticle-enriched cutting fluid in metal removal processes: a review. J Braz. Soc. Mech. Sci. Eng. 39, 4677–4717 (2017). https://doi.org/10.1007/s40430-017-0839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0839-0

Keywords

Navigation