Skip to main content
Log in

Investigations for mechanical, thermal and magnetic properties of polymeric composite matrix for four-dimensional printing applications

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In the present study, investigations for mechanical, thermal and magnetic properties of polymeric composite matrix comprising of polylactic acid (PLA), polyvinyl chloride (PVC) reinforced with wood dust and magnetite (Fe3O4) powder have been reported for possible four-dimensional printing applications. PLA polymer shows 4D properties based upon external stimulus along with excellent mechanical properties. The reinforcement of PVC, wood dust and Fe3O4 in PLA affects the 4D capabilities of composite matrix, which has been explored in this work based upon coercivity, magnetization, retentivity along with tensile properties and thermal stability. It has been observed that mechanical processing with twin screw extrusion at 170 °C barrel temperature, 0.10 Nm torque and 10 kg load are the optimized parametric conditions for hybrid blend (composite composition/proportion PLA 50 wt%–PVC 25 wt%–Fe3O4 20 wt%–wood dust 5 wt%). Further, it has been ascertained that only screw temperature is significant parameter for controlling the mechanical properties of the extrudate. The results are supported by surface hardness, surface roughness (Ra), porosity percentage (%) and fractured surface analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chacón JM, Caminero MA, García-Plaza E, Núñez PJ (2017) Additive manufacturing of PLA structures using fused deposition modeling: effect of process parameters on mechanical properties and their optimal selection. Mater Des 124:143–157. https://doi.org/10.1016/j.matdes.2017.03.065

    Article  Google Scholar 

  2. Lanzotti A, Grasso M, Staiano G, Martorelli M (2015) The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp J 21(5):604–617. https://doi.org/10.1108/RPJ-09-2014-0135

    Article  Google Scholar 

  3. Zhou Y, Lei L, Yang B, Li J, Ren J (2018) Preparation and characterization of polylactic acid (PLA) carbon nano-tube nano-composites. Polym Test 68:34–38. https://doi.org/10.1016/j.polymertesting.2018.03.044

    Article  Google Scholar 

  4. Reinhardt M, Kaufmann J, Kausch M, Kroll L (2013) PLA-viscose-composites with continuous fibre reinforcement for structural applications. Proc Mater Sci 2:137–143. https://doi.org/10.1016/j.mspro.2013.02.016

    Article  Google Scholar 

  5. Scaffaro R, Lopresti F, Botta L (2018) PLA based biocomposites reinforced with Posidonia oceanica leaves. Compos B Eng 139:1–11. https://doi.org/10.1016/j.compositesb.2017.11.048

    Article  Google Scholar 

  6. Nasrin R, Biswas S, Rashid TU, Afrin S, Jahan RA, Haque P, Rahman MM (2017) Preparation of Chitin-PLA laminated composite for implantable application. Bioact Mater 2(4):199–207. https://doi.org/10.1016/j.bioactmat.2017.09.003

    Article  Google Scholar 

  7. Bouakaz BS, Habi A, Grohens Y, Pillin I (2017) Organomontmorillonite/graphene-PLA/PCL nanofilled blends: new strategy to enhance the functional properties of PLA/PCL blend. Appl Clay Sci 139:81–91. https://doi.org/10.1016/j.clay.2017.01.014

    Article  Google Scholar 

  8. Gupta MK, Singh R (2018) Flexural and dynamic mechanical analysis (DMA) of polylactic acid (PLA) coated sisal fibre reinforced polyester composite. Mater Today Proc 5(2):6109–6114. https://doi.org/10.1016/j.matpr.2017.12.216

    Article  Google Scholar 

  9. Peponi L, Sessini V, Arrieta MP, Navarro-Baena I, Sonseca A, Dominici F, Kenny JM (2018) Thermally-activated shape memory effect on biodegradable nano-composites based on PLA/PCL blend reinforced with hydroxyapatite. Polym Degrad Stab 151:36–51. https://doi.org/10.1016/j.polymdegradstab.2018.02.019

    Article  Google Scholar 

  10. Singla RK, Zafar MT, Maiti SN, Ghosh AK (2017) Physical blends of PLA with high vinyl acetate containing EVA and their rheological, thermo-mechanical and morphological responses. Polym Test 63:398–406. https://doi.org/10.1016/j.polymertesting.2017.08.042

    Article  Google Scholar 

  11. Chen PY, Lian HY, Shih YF, Chen-Wei SM, Jeng RJ (2017) Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites. Mater Chem Phys 196:249–255. https://doi.org/10.1016/j.matchemphys.2017.05.006

    Article  Google Scholar 

  12. Wang Z, Xu Z, Lu Y, Hu L, Fan Y, Ma J, Zhou X (2017) Preparation of 3D printable micro/nanocellulose-polylactic acid (MNC/PLA) composite wire rods with high MNC constitution. Ind Crops Prod 109:889–896. https://doi.org/10.1016/j.indcrop.2017.09.061

    Article  Google Scholar 

  13. Varsavas SD, Kaynak C (2018) Effects of glass fiber reinforcement and thermoplastic elastomer blending on the mechanical performance of polylactide. Compos Commun 8:24–30. https://doi.org/10.1016/j.coco.2018.03.003

    Article  Google Scholar 

  14. Rahman MM, Islam MS, Li GS (2018) Development of PLA/CS/ZnO nano-composites and optimization it’s mechanical, thermal and water absorption properties. Polym Test 68:302–308. https://doi.org/10.1016/j.polymertesting.2018.04.026

    Article  Google Scholar 

  15. Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63(9):1317–1324. https://doi.org/10.1016/S0266-3538(03)00103-9

    Article  Google Scholar 

  16. Kelnar I, Kratochvíl J, Kaprálková L, Zhigunov A, Nevoralová M (2017) Graphite nano-platelets-modified PLA/PCL: effect of blend ratio and nano-filler localization on structure and properties. J Mech Behav Biomed Mater 71:271–278. https://doi.org/10.1016/j.jmbbm.2017.03.028

    Article  Google Scholar 

  17. Leist SK, Gao D, Chiou R, Zhou J (2017) Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles. Virtual Phys Prototyp 12(4):290–300. https://doi.org/10.1080/17452759.2017.1341815

    Article  Google Scholar 

  18. Abbas IA, Youssef HM (2009) Finite element analysis of two-temperature generalized magneto-thermoelasticity. Arch Appl Mech 79(10):917–925

    Article  Google Scholar 

  19. Abbas IA, Abo-Dahab SM (2014) On the numerical solution of thermal shock problem for generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity. J Comput Theor Nanosci 11(3):607–618

    Article  Google Scholar 

  20. Abbas IA, Youssef HM (2012) A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method. Int J Thermophys 33(7):1302–1313

    Article  Google Scholar 

  21. Abbas IA, Youssef HM (2013) Two-temperature generalized thermoelasticity under ramp-type heating by finite element method. Meccanica 48(2):331–339

    Article  MathSciNet  Google Scholar 

  22. Abd-Alla AENN, Abbas I (2002) A problem of generalized magnetothermoelasticity for an infinitely long, perfectly conducting cylinder. J Therm Stresses 25(11):1009–1025

    Article  Google Scholar 

  23. Kumar R, Abbas IA (2013) Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures. J Comput Theor Nanosci 10(9):2241–2247

    Article  Google Scholar 

  24. Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6

    Article  Google Scholar 

  25. Jing X, Mi HY, Peng XF, Turng LS (2014) The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends. Polym Eng Sci 55(1):70–80. https://doi.org/10.1002/pen.23873

    Article  Google Scholar 

  26. Zabłocka-Malicka M, Rutkowski P, Szczepaniak W (2015) Recovery of copper from PVC multiwire cable waste by steam gasification. Waste Manag 46:488–496. https://doi.org/10.1016/j.wasman.2015.08.001

    Article  Google Scholar 

  27. Yang L, Hu Y, You F, Chen Z (2007) A novel method to prepare zinc hydroxystannate-coated inorganic fillers and its effect on the fire properties of PVC cable materials. Polym Eng Sci 47(7):1163–1169. https://doi.org/10.1002/pen.20482

    Article  Google Scholar 

  28. Shiroishi H, Oda T, Hamada I, Fujima N (2003) Structure and magnetism on iron oxide clusters FenOm (n = 1–5): calculation from first principles. Eur Phys J D Atomic Mol Opt Phys 24(1–3):85–88. https://doi.org/10.1140/epjd/e2003-00136-3

    Article  Google Scholar 

  29. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  30. Yu B, Wang M, Sun H, Zhu F, Han J, Bhat G (2007) Preparation and properties of poly(lactic acid)/magnetic Fe3O4 composites and nonwovens. RSC Adv 7(66):41929–41935. https://doi.org/10.1039/C7RA06427F

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to GNDEC Ludhiana and TIET Patiala for providing laboratory facilities and continuous support in all form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupinder Singh.

Additional information

Technical Editor: Adriano Fagali de Souza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, R., Singh, T.P. et al. Investigations for mechanical, thermal and magnetic properties of polymeric composite matrix for four-dimensional printing applications. J Braz. Soc. Mech. Sci. Eng. 42, 160 (2020). https://doi.org/10.1007/s40430-020-2251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-2251-4

Keywords

Navigation