Skip to main content
Log in

A plethora of behaviors in a memristor based Hopfield neural networks (HNNs)

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This work investigates the nonlinear dynamics of a model of memristor based Hopfield Neural Networks (HNNs). The investigations show that the memristive HNNs possesses three equilibrium points among which the origin and two nonzero equilibrium points. It is found that the origin and the nonzero equilibrium points are always unstable for the set of synaptic weights matrix used for the analysis. Numerical simulations, carried out in terms of bifurcation diagrams, graphs of Lyapunov exponents, phase portraits and frequency spectra, are used to highlight the complex dynamical behaviors exhibited by the model. The results indicate that the introduced memristive HNNs exhibits rich nonlinear dynamical behaviors including period doubling bifurcation, symmetry restoring crisis, chaos, periodic window, antimonotonicity (i.e. concurrent creation and annihilation of periodic orbits) and coexisting self-excited attractors (e.g. coexistence of two, four and six disconnected periodic and chaotic attractors) not reported in the relevant literature. Finally, PSpice simulation investigations support the results of theoretical analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chua LO (1971) Memristor the missing circuit element. IEEE Trans Circuit Theory CT–18:507–519

    Article  Google Scholar 

  2. Chua LO, kang M (1976) Memrisive devices and systems. Proc IEEE 64:209–223

    Article  MathSciNet  Google Scholar 

  3. Strukov DB, Snider GS, Stewart GR, Williams RS (2008) The missing memristor found. Nature 453:80–83

    Article  Google Scholar 

  4. Pershin YV, Di Ventra M (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23:881–886

    Article  Google Scholar 

  5. Andrew LF, Dongsheng Y, Herbert HCI, Victor S (2012) Hyperchaos in a memristor based modified canonical Chua’s circuit. Int J Bifurc Chaos 22(6):1250133

    Article  MATH  Google Scholar 

  6. Kengne J, Njitacke ZT, Kamdoum VT, Negou AN (2015) Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos Interdiscip J Nonlinear Sci 25:103126

    Article  MathSciNet  MATH  Google Scholar 

  7. Njitacke ZT, Kengne J, Fotsin HB, Negou AN, Tchiotsop D (2016) Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bridge-based Jerk circuit. Chaos Solitons Fractals 91:180–197

    Article  MATH  Google Scholar 

  8. Fang Y, Guangyi W, Yiran S, Xiaoyuan W (2016) Coexisting attractors in a memcapacitor-based chaotic oscillator. Nonlinear Dyn. https://doi.org/10.1007/s11071-016-2870-6

    MathSciNet  Google Scholar 

  9. Qingdu L, Hongzheng Z, Jing L (2016) Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. https://doi.org/10.1007/s11071-014-1812-4

    Google Scholar 

  10. Kengne J (2015) Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. Int J Bifurc Chaos 25(4):1550052

    Article  MathSciNet  Google Scholar 

  11. Kengne J, Njitacke ZT, Fotsin HB (2016) Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn 83:751–765

    Article  MathSciNet  Google Scholar 

  12. Kengne J, Njitacke ZT, Fotsin HB (2016) Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing–Holmes type chaotic oscillators. Commun Nonlinear Sci Numer Simul 36:29–44

    Article  MathSciNet  Google Scholar 

  13. Kengne J, Njitacke ZT, Negou AN, Tsostop MF, Fotsin HB (2016) Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. Int J Bifurc Chaos 26(5):1650081

    Article  MATH  Google Scholar 

  14. Li C, Sprott JC (2014) Coexisting hidden attractors in a 4-D simplified Lorenz system. Int J Bifurc Chaos 24:1450034

    Article  MathSciNet  MATH  Google Scholar 

  15. Li C, Hu W, Sprott JC, Wang X (2015) Multistability in symmetric chaotic systems. Eur Phys J Spec Top 224:1493–1506

    Article  Google Scholar 

  16. Masoller C (1994) Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys Rev A 50:2569–2578

    Article  Google Scholar 

  17. Thompson JM, Stewart HB (1986) Nonlinear dynamics and chaos. Wiley, Chichester

    MATH  Google Scholar 

  18. Cushing JM, Henson SM, Blackburn (2007) Multiple mixed attractors in a competition model. J Biol Dyn 1:347–362

    Article  MathSciNet  MATH  Google Scholar 

  19. Upadhyay RK (2003) Multiple attractors and crisis route to chaos in a model of food-chain. Chaos Solitons Fractals 16:737–747

    Article  MathSciNet  MATH  Google Scholar 

  20. Njitacke ZT, Kengne J, Negou AN (2017) Dynamical analysis and electronic circuit realization of an equilibrium free 3D chaotic system with a large number of coexisting attractors. Optik 130:356–364

    Article  Google Scholar 

  21. Njitacke ZT, Kengne J, Wafo Tapche R, Pelap FB (2018) Uncertain destination dynamics of a novel memristive 4D autonomous system. Chaos Solitons Fractals 107:177–185

    Article  MathSciNet  MATH  Google Scholar 

  22. Jafari S, Ahmadi A, Panahi S, Rajagopal K (2018) Extreme multi-stability: when imperfection changes quality. Chaos Solitons Fractals 108:182–186

    Article  Google Scholar 

  23. Güçlü U, Van Gerven MAJ (2017) Modeling the dynamics of human brain activity with recurrent neural networks. Front Comput Neurosci 11(7):1–14

    Google Scholar 

  24. Li Q, Yang X (2005) Complex dynamics in a simple Hopfield-type neural network, In: Wang J, Liao X, Yi Z (eds) Advances in neural networks—ISNN 2005. ISNN. Lecture notes in computer science, vol 3496, pp 357–362. Springer, Berlin

  25. Pham VT, Volos C, Jafari S, Wang X, Vaidyanathan S (2014) Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectron Adv Mater Rapid Commun 8:11–12

    Google Scholar 

  26. Van Straaten EC, Stam CJ (2013) Structure out of chaos: functional brain network analysis with EEG, MEG, and functional MRI. Eur Neuropsychopharmacol 23:7–18

    Article  Google Scholar 

  27. Alhawarat M, Scheper TO, Crook N (2015) Investigation of a chaotic spiking neuron model. arXiv:1501.02192

  28. Panahi S, Aram Z, Jafari S, Ma M, Sprott JC (2017) Modeling of epilepsy based on chaotic artificial neural network. Chaos Solitons Fractals 105:150–156

    Article  MathSciNet  Google Scholar 

  29. Ma J, Tang J (2017) A review for dynamics in neuron and neuronal network. Nonlinear Dyn. https://doi.org/10.1007/s11071-017-3565-3

    MathSciNet  Google Scholar 

  30. Yang XS, Yuan Q (2005) Chaos and transient chaos in simple Hopfield neural networks. Neurocomputing 69:232–241

    Article  Google Scholar 

  31. Zheng P, Tang W, Zang J (2010) Some novel double-scroll chaotic attractors in Hopfield networks. Neurocomputing 73:2280–2285

    Article  Google Scholar 

  32. Li Q, Tang S, Zeng H, Zhou T (2014) On hyperchaos in a small memristive neural network. Nonlinear Dyn 78:1087–1099

    Article  MATH  Google Scholar 

  33. Danca MF, Kuznetsov L (2017) Hidden chaotic sets in a Hopfield neural system. Chaos Solitons Fractals 103:144–150

    Article  MathSciNet  MATH  Google Scholar 

  34. Bao B, Qian H, Xu Q, Chen M, Wang J, Yu Y (2017) Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front Comput Neurosci 11(81):1–14

    Google Scholar 

  35. Bao B, Qian H, Wang J, Xu Q, Chen M, Wu H, Yu Y (2017) Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network. Nonlinear Dyn. https://doi.org/10.1007/s11071-017-3808-3

    MathSciNet  Google Scholar 

  36. Kengne J (2016) On the dynamics of Chua’s oscillator with a smooth cubic nonlinearity: occurrence of multiple attractors. Nonlinear Dyn. https://doi.org/10.1007/s11071-016-3047-z

    Google Scholar 

  37. Kengne J, Negou AN, Njitacke ZT (2017) Antimonotonicity, chaos and multiple attractors in a novel autonomous jerk circuit. Int J Bifurc Chaos 27:71750100

    Article  MathSciNet  MATH  Google Scholar 

  38. Njitacke ZT, Kengne J, Kamdjeu Kengne L (2017) Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit. Chaos Solitons Fractals 105:77–91

    Article  MathSciNet  Google Scholar 

  39. Nayfeh AH, Balakumar B (1995) Applied nonlinear dynamics: analytical, computational and experimental methods. Wiley, New York

    Book  MATH  Google Scholar 

  40. Hilborn RC (1994) Chaos and nonlinear dynamics an introduction for scientists and engineers. Oxford University, Oxford

    MATH  Google Scholar 

  41. Nik HS, Effati S, Saberi-Nadjafi J (2015) Ultimate bound sets of a hyperchaotic system and its application in chaos synchronization. Complexity 20:30–44

    Article  MathSciNet  MATH  Google Scholar 

  42. Chen M, Xu Q, Lin Y, Bao BC (2017) Multistability induced by two symmetric stable node-foci in modified canonical Chua’s circuit. Nonlinear Dyn 87:789–802

    Article  Google Scholar 

  43. Wolf A, Swift JB, Swinney HL, Wastano JA (1985) Determining Lyapunov exponents from time series. Physica D 16:285–317

    Article  MathSciNet  MATH  Google Scholar 

  44. Bier M, Boutis TC (1984) Remerging Feigenbaum trees in dynamical systems. Phys Lett A 104:239–244

    Article  MathSciNet  Google Scholar 

  45. Kocarev L, Halle K, Eckert K, Chua L (1993) Experimental observation of antimonotonicity in Chua’s circuit. Int J Bifurc Chaos 3:1051–1055

    Article  MATH  Google Scholar 

  46. Kengne J, Jafari S, Njitacke ZT, Yousefi Azar Khanian M, Cheukem A (2017) Dynamic analysis and electronic circuit implementation of a novel 3D autonomous system without linear terms. Commun Nonlinear Sci Numer Simul. https://doi.org/10.1016/j.cnsns.2017.04.017

    Google Scholar 

  47. Dawson SP, Grebogi C, York JA, IKan I, Koçak K (1992) Antimonotonicity: inevitable reversals of period-doubling cascades. Phys Lett A 162:249–254

    Article  MathSciNet  Google Scholar 

  48. Dawson SP (1993) Geometric mechanism for antimonotonicity in scalar maps with two critical points. Phys Rev E 48:1676–1680

    Article  MathSciNet  Google Scholar 

  49. Pham VT, Jafari S, Vaidyanathan S, Volos C, Wang X (2015) A novel memristive neural network with hidden attractors and its circuitry implementation. Sci China Technol Sci. https://doi.org/10.1007/s11431-015-5981-2

    Google Scholar 

  50. Patel MS, Patel U, Sen A, Sethia GC, Hens C, Dana SK, Feudel U, Showalter K, Ngonghala CN, Amritkar RE (2014) Experimental observation of extreme multistability in an electronic system of two coupled Rossler oscillators. Phys Rev E 89:022918

  51. Akhmet MU, Karacaoren M (2016) Stability of Hopfield neural networks with delay and piecewise constant argument. Discontinuity Nonlinearity Complex 5(1):33–42

    Article  MATH  Google Scholar 

  52. Kuznetsov AP, Sedov YV (2016) Coupled systems with hyperchaos and quasi periodicity. J Appl Nonlinear Dyn 5(2):161–167

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the reviewers for their comments and suggestions that greatly improved the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. T. Njitacke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Njitacke, Z.T., Kengne, J. & Fotsin, H.B. A plethora of behaviors in a memristor based Hopfield neural networks (HNNs). Int. J. Dynam. Control 7, 36–52 (2019). https://doi.org/10.1007/s40435-018-0435-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0435-x

Keywords

Navigation