Skip to main content
Log in

Binding and conformation of dendrimer-based drug delivery systems: a molecular dynamics study

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

All atomistic molecular dynamics simulations were performed on poly (amidoamine) (PAMAM) dendrimers that compound non-covalently with anticancer drug molecules including DOX, MTX, CE6, and SN38. The binding energies as well as their associated interaction energies and deformation energies were combined to evaluate the relative binding strength among drug, PAMAM, and PEG chains. We find that the deformation of dendrimers due to drug loading plays a crucial role in the drug binding. It is energetically favorable for the drug molecules to bind with PAMAM while the drugs bind with PEG metastable chains via kinetic confinement. Surface PEGylation helps dendrimers to accommodate more drug molecules with greater strength without inducing too much expansion. This work indicates that tuning the functionalized terminal groups of dendrimers is critical to design efficient dendrimer-based drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15(5):171–185

    Article  Google Scholar 

  2. Tomalia DA, Baker H, Dewald J et al (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17(1):117–132

    Article  Google Scholar 

  3. Kolhe P, Misra E, Kannan RM et al (2003) Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 259(1):143–160

    Article  Google Scholar 

  4. Zhang YH, Thomas TP, Lee KH et al (2011) Polyvalent saccharide-functionalized generation 3 poly(amidoamine) dendrimer–methotrexate conjugate as a potential anticancer agent. Bioorgan Med Chem 19(8):2557–2564

    Article  Google Scholar 

  5. Kurtoglu YE, Mishra MK, Kannan S et al (2010) Drug release characteristics of PAMAM dendrimer–drug conjugates with different linkers. Int J Pharm 384(1):189–194

    Article  Google Scholar 

  6. Wiener EC, Brechbiel MW, Brothers H et al (1994) Dendrimer-based metal-chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31(1):1–8

    Article  Google Scholar 

  7. Kobayashi H, Saga T, Kawamoto S et al (2001) Dynamic micro-magnetic resonance imaging of liver micrometastasis in mice with a novel liver macromolecular magnetic resonance contrast agent DAB-Am64-(1B4M-Gd) 64. Cancer Res 61(13):4966–4970

    Google Scholar 

  8. Majoros IJ, Williams CR, Baker JR (2008) Current dendrimer applications in cancer diagnosis and therapy. Curr Top Med Chem 8(14):1165–1179

    Article  Google Scholar 

  9. Lee CC, MacKay JA, Frechet JMJ et al (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517–1526

    Article  Google Scholar 

  10. Esfand R, Tomalia DA (2001) Poly (amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436

    Article  Google Scholar 

  11. Kavyani S, Amjad-Iranagh S, Modarress H (2014) Aqueous poly(amidoamine) dendrimer G3 and G4 generations with several interior cores at pHs 5 and 7: a molecular dynamics simulation study. J Phys Chem B 118(12):3257–3266

    Article  Google Scholar 

  12. Mignani S, El Kazzouli S, Bousmina M et al (2013) Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev 65(10):1316–1330

    Article  Google Scholar 

  13. Svenson S, Tomalia DA (2012) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 64(1):102–105

    Article  Google Scholar 

  14. Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology and flexibility from atoms to macroscopic matter. Angew Chem Int Edit 29(2):138–175

    Article  Google Scholar 

  15. Yabbarov NG, Posypanova GA, Vorontsov EA et al (2013) Targeted delivery of doxorubicin: drug delivery system based on PAMAM dendrimers. Biochemistry (Moscow) 78(8):884–894

    Article  Google Scholar 

  16. Chang YL, Liu N, Chen L et al (2012) Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery. J Mater Chem 22(19):9594–9601

    Article  Google Scholar 

  17. Wang Y, Cao XY, Guo R et al (2011) Targeted delivery of doxorubicin into cancer cells using a folic acid–dendrimer conjugate. Polym Chem 2(8):1754–1760

    Article  Google Scholar 

  18. Chang YL, Li YP, Meng XL et al (2013) Dendrimer functionalized water soluble magnetic iron oxide conjugates as dual imaging probe for tumor targeting and drug delivery. Polym Chem 4(3):789–794

    Article  Google Scholar 

  19. Majoros IJ, Myc A, Thomas T et al (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7(2):572–579

    Article  Google Scholar 

  20. Rekas A, Lo V, Gadd GE et al (2009) PAMAM dendrimers as potential agents against fibrillation of alpha-synuclein, a Parkinson’s disease-related protein. Macromol Biosci 9(3):230–238

    Article  Google Scholar 

  21. Kang H, DeLong R, Fisher MH et al (2005) Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm Res 22(12):2099–2106

    Article  Google Scholar 

  22. Majoros IJ, Thomas TP, Mehta CB et al (2005) Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J Med Chem 48(19):5892–5899

    Article  Google Scholar 

  23. Wang W, Xiong W, Zhu YH et al (2010) Protective effect of PEGylation against poly(amidoamine) dendrimer-induced hemolysis of human red blood cells. J Biomed Mater Res B 93B(1):59–64

    Google Scholar 

  24. He H, Li Y, Jia XR et al (2011) PEGylated poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 32(2):478–487

    Article  Google Scholar 

  25. Sideratou Z, Kontoyianni C, Drossopoulou GI et al (2010) Synthesis of a folate functionalized PEGylated poly(propylene imine) dendrimer as prospective targeted drug delivery system. Bioorg Med Chem Lett 20(22):6513–6517

    Article  Google Scholar 

  26. Singh P, Gupta U, Asthana A et al (2008) Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug Chem 19(11):2239–2252

    Article  Google Scholar 

  27. Isakau HA, Parkhats MV, Knyukshto VN et al (2008) Toward understanding the high PDT efficacy of chlorine6–polyvinylpyrrolidone formulations: photophysical and molecular aspects of photosensitizer–polymer interaction in vitro. J Photochem Photobiol B 92(3):165–174

    Article  Google Scholar 

  28. Goldberg DS, Vijayalakshmi N, Swaan PW et al (2011) G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity. J Control Release 150(3):318–325

    Article  Google Scholar 

  29. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    Article  Google Scholar 

  30. Tian WD, Ma YQ (2012) pH-responsive dendrimers interacting with lipid membranes. Soft Matter 8(9):2627–2632

    Article  Google Scholar 

  31. Maingi V, Kumar MVS, Maiti PK (2012) PAMAM dendrimer−drug interactions: effect of pH on the binding and release pattern. J Phys Chem B 116(14):4370–4376

    Article  Google Scholar 

  32. Crampton HL, Simanek EE (2007) Dendrmers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers. Polym Int 56(4):489–496

    Article  Google Scholar 

  33. Kwon IK, Lee SC, Han B et al (2012) Analysis on the current status of targeted drug delivery to tumors. J Control Release 164(2):108–114

    Article  Google Scholar 

  34. Karatasos K, Krystallis M (2009) Dynamics of counterions in dendrimer polyelectrolyte solutions. J Chem Phys 130(11):1–11

    Article  Google Scholar 

  35. Zhong TP, Ai PF, Zhou J (2011) Structures and properties of PAMAM dendrimer: a multi-scale simulation study. Fluid Phase Equilib 302(1):43–47

    Article  Google Scholar 

  36. Liu Y, Bryantsev VS, Diallo MS et al (2009) PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc 131(8):2798–2799

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial supports from “Shanghai Pujiang Talent” program (Grant No. 12PJ1406500), “Shanghai High-tech Area of Innovative Science and Technology (Grant No. 14521100602)”, STCSM; “Key Program of Innovative Scientific Research” (Grant No. 14ZZ130) and “Key Laboratory of Advanced Metal-based Electrical Power Materials”, the Education Commission of Shanghai Municipality; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Grant No. SKLOP201402001); National Natural Science Foundation of China (Grant Nos. 51202137, 61240054, and 11274222). Computations were carried out at Hujiang HPC facilities at USST, Shanghai Supercomputer Center, and National Supercomputing Center in Shenzhen, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Liu or Jing-Cheng Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, FD., Liu, Y., Xu, JC. et al. Binding and conformation of dendrimer-based drug delivery systems: a molecular dynamics study. Adv. Manuf. 3, 221–231 (2015). https://doi.org/10.1007/s40436-015-0120-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-015-0120-7

Keywords

Navigation