Skip to main content

Advertisement

Log in

Transforming Our Cities: Best Practices Towards Clean Air and Active Transportation

  • Air Pollution and Health (S Adar and B Hoffmann, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

By 2050, 70% of the global population will live in urban areas, exposing a greater number of people to specific city-related health risks that will only be exacerbated by climate change. Two prominent health risks are poor air quality and physical inactivity. We aim to review the literature and state the best practices for clean air and active transportation in urban areas.

Recent Findings

Cities have been targeting reductions in air pollution and physical inactivity to improve population health. Oslo, Paris, and Madrid plan on banning cars from their city centers to mitigate climate change, reduce vehicle emissions, and increase walking and cycling. Urban streets are being redesigned to accommodate and integrate various modes of transportation to ensure individuals can become actively mobile and healthy. Investments in pedestrian, cycling, and public transport infrastructure and services can both improve air quality and support active transportation. Emerging technologies like electric and autonomous vehicles are being developed and may reduce air pollution but have limited impact on physical activity. Green spaces too can mitigate air pollution and encourage physical activity.

Summary

Clean air and active transportation overlap considerably as they are both functions of mobility. The best practices of clean air and active transportation have produced impressive results, which are improved when enacted simultaneously in integrated policy packages. Further research is needed in middle- and low-income countries, using measurements from real-world interventions, tracing air pollution back to the sources responsible, and holistically addressing the entire spectrum of exposures and health outcomes related to transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. WHO. Air pollution. WHO. 2018. https://www.who.int/airpollution/ambient/health-impacts/en/. Accessed 13.10.2018.

  2. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907–18. https://doi.org/10.1016/S0140-6736(17)30505-6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tonne C, Basagaña X, Chaix B, Huynen M, Hystad P, Nawrot TS, et al. New frontiers for environmental epidemiology in a changing world. Environ Int. 2017;104:155–62. https://doi.org/10.1016/j.envint.2017.04.003.

    Article  PubMed  Google Scholar 

  4. World Bank. Reducing pollution. 2018. http://www.worldbank.org/en/topic/environment/brief/pollution. Accessed on 12.09.2018.

  5. Patz JA, Grabow ML, Limaye VS. When it rains, it pours: future climate extremes and health. Ann Glob Health. 2014;80(4):332–44. https://doi.org/10.1016/j.aogh.2014.09.007.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gouldson A, Sudmant A, Khreis H, Papargyropoulou E. The economic and social benefits of low-carbon cities: a systematic review of the evidence. London: Coalition for Urban Transitions; 2018. http://newclimateeconomy.net/content/cities-working-papers.

    Google Scholar 

  7. WHO. Global strategy on diet, physical activity and health: physical activity. WHO. 2018. https://www.who.int/dietphysicalactivity/factsheet_adults/en/. Accessed 13.10 2018.

  8. WHO. Physical inactivity: a global public health problem. 2018. http://www.who.int/dietphysicalactivity/factsheet_inactivity/en/. Accessed 12.09 2018.

  9. Mueller N, Rojas-Rueda D, Cole-Hunter T, de Nazelle A, Dons E, Gerike R, et al. Health impact assessment of active transportation: a systematic review. Prev Med. 2015;76:103–14. https://doi.org/10.1016/j.ypmed.2015.04.010.

    Article  PubMed  Google Scholar 

  10. Nieuwenhuijsen MJ, Khreis H, Verlinghieri E, Rojas-Rueda D. Transport and health: a marriage of convenience or an absolute necessity. Environ Int. 2016;88:150–2. https://doi.org/10.1016/j.envint.2015.12.030.

    Article  PubMed  Google Scholar 

  11. UN. 68% of the world population projected to live in urban areas by 2050, says UN. 2018. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html. Accessed 12.09.2018.

  12. Hoffmann B. Air pollution in cities: urban and transport planning determinants and health in cities. In: Nieuwenhuijsen M, Khreis H, editors. Integrating human health into urban and transport planning: a framework. Cham: Springer International Publishing; 2019. p. 425–41.

    Chapter  Google Scholar 

  13. Li W, Kamargianni M. Air pollution and seasonality effects on mode choice in China. Transp Res Rec. 2017;2634:101–9. https://doi.org/10.3141/2634-15.

    Article  Google Scholar 

  14. WHO. WHO Global Ambient Air Quality Database. 2018. https://www.who.int/phe/health_topics/outdoorair/databases/cities/en/. Accessed 15.08 2018.

  15. EPA. Air quality—cities and counties. 2017. https://www.epa.gov/air-trends/air-quality-cities-and-counties. Accessed 10.09 2018.

  16. BBC. Indian Cities Dominate World Air Pollution List. 2018. https://www.bbc.com/news/world-asia-india-43972155. Accessed 08.08 2018.

  17. Requia WJ, Mohamed M, Higgins CD, Arain A, Ferguson M. How clean are electric vehicles? Evidence-based review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health. Atmos Environ. 2018;185:64–77. https://doi.org/10.1016/j.atmosenv.2018.04.040.

    Article  CAS  Google Scholar 

  18. EEA. Air quality in europe—2017 report. 2017. https://www.eea.europa.eu/publications/air-quality-in-europe-2017. Accessed 27.08.2018.

  19. WHO. Health effects of transport-related air pollution. 2005. Accessed 10.08.2018.

  20. Health Effects Institute. Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects. HEI special report 17. 2010. Accessed on 10.10.2018.

  21. Lu F, Xu D, Cheng Y, Dong S, Guo C, Jiang X, et al. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environ Res. 2015;136:196–204. https://doi.org/10.1016/j.envres.2014.06.029.

    Article  PubMed  CAS  Google Scholar 

  22. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014;383(9919):785–95. https://doi.org/10.1016/S0140-6736(13)62158-3.

    Article  PubMed  CAS  Google Scholar 

  23. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013;14(9):813–22. https://doi.org/10.1016/S1470-2045(13)70279-1.

    Article  PubMed  Google Scholar 

  24. MacIntyre EA, Gehring U, Mölter A, Fuertes E, Klümper C, Krämer U, et al. Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE Project. Environ Health Perspect. 2013;122(1):107–13.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environ Int. 2017;100:1–31.

    Article  PubMed  CAS  Google Scholar 

  26. Kumar P, Patton AP, Durant JL, Frey HC. A review of factors impacting exposure to PM2.5, ultrafine particles and black carbon in Asian transport microenvironments. Atmos Environ. 2018;187:301–16. https://doi.org/10.1016/j.atmosenv.2018.05.046.

    Article  CAS  Google Scholar 

  27. Vrijheid M, Martinez D, Manzanares S, Dadvand P, Schembari A, Rankin J, et al. Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis. Environ Health Perspect. 2011;119(5):598–606. https://doi.org/10.1289/ehp.1002946.

    Article  PubMed  CAS  Google Scholar 

  28. Robert D, Brook SR, Arden Pope C 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease. American Heart Association Circulation. 2010;121(21):2331–78.

    Google Scholar 

  29. Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Künzli N, et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ Health Perspect. 2015;123(5):381–9. https://doi.org/10.1289/ehp.1307823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jerrett M, McConnell R, Wolch J, Chang R, Lam C, Dunton G, et al. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis. Environ Health. 2014;13:49. https://doi.org/10.1186/1476-069X-13-49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Raz R, Roberts AL, Lyall K, Hart JE, Just AC, Laden F, et al. Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case–control analysis within the Nurses’ Health Study II Cohort. Environ Health Perspect. 2015;123(3):264–70. https://doi.org/10.1289/ehp.1408133.

    Article  PubMed  CAS  Google Scholar 

  32. Power MC, Adar SD, Yanosky JD, Weuve J. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: a systematic review of epidemiologic research. Neurotoxicology. 2016;56:235–53. https://doi.org/10.1016/j.neuro.2016.06.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sapkota A, Chelikowsky AP, Nachman KE, Cohen AJ, Ritz B. Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis. Air Quality, Atmosphere & Health. 2012;5(4):369–81. https://doi.org/10.1007/s11869-010-0106-3.

    Article  CAS  Google Scholar 

  34. EEA. Emissions of the main air pollutants in Europe. 2018. https://www.eea.europa.eu/data-and-maps/indicators/main-anthropogenic-air-pollutant-emissions/assessment-4. Accessed 09.10 2018.

  35. IARC. Outdoor air pollution a leading environmental cause of cancer deaths. Press release 221 ed. Lyon: International Agency for Research on Cancer; 2013. Accessed on 14.09.2018

    Google Scholar 

  36. Straif K, Cohen AJ, Samet J. Air pollution and cancer. Lyon: International Agency for Research on Cancer; 2013. Contract No.: 161. Accessed on 17.09.2018.

    Google Scholar 

  37. Gonzalez-Barcala FJ, Pertega S, Garnelo L, Castro TP, Sampedro M, Lastres JS, et al. Truck traffic related air pollution associated with asthma symptoms in young boys: a cross-sectional study. Public Health. 2013;127(3):275–81. https://doi.org/10.1016/j.puhe.2012.12.028.

    Article  PubMed  CAS  Google Scholar 

  38. Svendsen ER, Gonzales M, Mukerjee S, Smith L, Ross M, Walsh D, et al. GIS-modeled indicators of traffic-related air pollutants and adverse pulmonary health among children in El Paso, Texas. Am J Epidemiol. 2012;176(suppl_7):S131–S41. https://doi.org/10.1093/aje/kws274.

    Article  PubMed  Google Scholar 

  39. Gruzieva O, Bergström A, Hulchiy O, Kull I, Lind T, Melén E, et al. Exposure to air pollution from traffic and childhood asthma until 12 years of age. Epidemiology. 2013;24(1):54–61. https://doi.org/10.1097/EDE.0b013e318276c1ea.

    Article  PubMed  Google Scholar 

  40. McConnell R, Islam T, Shankardass K, Jerrett M, Lurmann F, Gilliland F, et al. Childhood incident asthma and traffic-related air pollution at home and school. Environ Health Perspect. 2010;118(7):1021–6. https://doi.org/10.1289/ehp.0901232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hime N, Marks G, Cowie C. A comparison of the health effects of ambient particulate matter air pollution from five emission sources. Int J Environ Res Public Health. 2018;15(6):1206.

    Article  PubMed Central  Google Scholar 

  42. Berger K, Malig BJ, Hasheminassab S, Pearson DL, Sioutas C, Ostro B, et al. Associations of source-apportioned fine particles with cause-specific mortality in California. Int J Environ Res Public Health. 2018;29(5):639–48. https://doi.org/10.1097/ede.0000000000000873.

    Article  Google Scholar 

  43. Khreis H, de Hoogh K, Nieuwenhuijsen MJ. Full-chain health impact assessment of traffic-related air pollution and childhood asthma. Environ Int. 2018;114:365–75. https://doi.org/10.1016/j.envint.2018.03.008.

    Article  PubMed  CAS  Google Scholar 

  44. Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, et al. Air pollution and mortality in the Medicare population. N Engl J Med. 2017;376(26):2513–22. https://doi.org/10.1056/NEJMoa1702747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. WHO. Ambient (outdoor) air quality and health. 2018. http://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. Accessed 14.07 2018.

  46. Pinault LL, Weichenthal S, Crouse DL, Brauer M, Erickson A, Donkelaar AV, et al. Associations between fine particulate matter and mortality in the 2001 Canadian Census Health and Environment Cohort. Environ Res. 2017;159:406–15. https://doi.org/10.1016/j.envres.2017.08.037.

    Article  PubMed  CAS  Google Scholar 

  47. European Commission E. Air quality standards. European Commission. 2018. http://ec.europa.eu/environment/air/quality/standards.htm. Accessed on 15.09.2018.

  48. Environmental Protection Agency E. NAAQS Table. Criteria Air Pollutants. EPA. 2016. https://www.epa.gov/criteria-air-pollutants/naaqs-table. Accessed on 12.10.2018.

  49. Josh Miller LD, Kodjak D. Impacts of world-class vehicle efficiency and emissions regulations in select G20 countries. The International Council on Clean Transportation. 2017. Accessed on 15.10.2018.

  50. Nesbit M, Fergusson M, Colsa A, Ohlendorf J, Hayes MC, Paquel K, Schweitzer JP. Comparative study on the differences between the EU and the US legislation on emissions in the automotive sector: European Parliament 2016. Accessed on 15.10.2018.

  51. EEA. Air Pollution. EEA. 2017. https://www.eea.europa.eu/themes/air/intro. Accessed 12.09 2018.

  52. Chossière GP, Malina R, Allroggen F, Eastham SD, Speth RL, Barrett SRH. Country- and manufacturer-level attribution of air quality impacts due to excess NOx emissions from diesel passenger vehicles in Europe. Atmos Environ. 2018;189:89–97. https://doi.org/10.1016/j.atmosenv.2018.06.047.

    Article  CAS  Google Scholar 

  53. Dieselnet. United States: cars and light-duty trucks: tier 3. 2016. https://www.dieselnet.com/standards/us/ld.php. Accessed on 13.10.2018.

  54. USDOT. Active transportation. 2015. https://www.transportation.gov/mission/health/active-transportation.

  55. Smith M, Hosking J, Woodward A, Witten K, MacMillan A, Field A, et al. Systematic literature review of built environment effects on physical activity and active transport—an update and new findings on health equity. Int J Behav Nutr Phys Act. 2017;14(1):158. https://doi.org/10.1186/s12966-017-0613-9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang L, Wen C. The relationship between the neighborhood built environment and active transportation among adults: a systematic literature review. Urban Sci. 2017;1(3):29.

    Article  Google Scholar 

  57. Cascetta E, Cartenì A. A quality-based approach to public transportation planning: theory and a case study. International Journal of Sustainable Transportation. 2014;8(1):84–106. https://doi.org/10.1080/15568318.2012.758532.

    Article  Google Scholar 

  58. Wang L, Li L, Wu B, Bai Y. Private car switched to public transit by commuters, in Shanghai, China. Procedia Soc Behav Sci. 2013;96:1293–303. https://doi.org/10.1016/j.sbspro.2013.08.147.

    Article  Google Scholar 

  59. Winters M, Buehler R, Götschi T. Policies to promote active travel: evidence from reviews of the literature. Curr Environ Health Rep. 2017;4(3):278–85. https://doi.org/10.1007/s40572-017-0148-x.

    Article  PubMed  Google Scholar 

  60. Raza W, Forsberg B, Johansson C, Sommar JN. Air pollution as a risk factor in health impact assessments of a travel mode shift towards cycling. Glob Health Action. 2018;11(1):1429081. https://doi.org/10.1080/16549716.2018.1429081.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tainio M, de Nazelle AJ, Götschi T, Kahlmeier S, Rojas-Rueda D, Nieuwenhuijsen MJ, et al. Can air pollution negate the health benefits of cycling and walking? Prev Med. 2016;87:233–6. https://doi.org/10.1016/j.ypmed.2016.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  62. de Nazelle A, Bode O, Orjuela JP. Comparison of air pollution exposures in active vs. passive travel modes in European cities: a quantitative review. Environ Int. 2017;99:151–60. https://doi.org/10.1016/j.envint.2016.12.023.

    Article  PubMed  CAS  Google Scholar 

  63. Ham W, Vijayan A, Schulte N, Herner JD. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmos Environ. 2017;167:335–45. https://doi.org/10.1016/j.atmosenv.2017.08.024.

    Article  CAS  Google Scholar 

  64. • Cepeda M, Schoufour J, Freak-Poli R, Koolhaas CM, Dhana K, Bramer WM, et al. Levels of ambient air pollution according to mode of transport: a systematic review. Lancet Public Health. 2017;2(1):e23–34. https://doi.org/10.1016/S2468-2667(16)30021-4 A systematic review of air pollution exposure differences by transportation mode.

    Article  PubMed  Google Scholar 

  65. Apparicio P, Gelb J, Carrier M, Mathieu M-È, Kingham S. Exposure to noise and air pollution by mode of transportation during rush hours in Montreal. J Transp Geogr. 2018;70:182–92. https://doi.org/10.1016/j.jtrangeo.2018.06.007.

    Article  Google Scholar 

  66. MacNaughton P, Melly S, Vallarino J, Adamkiewicz G, Spengler JD. Impact of bicycle route type on exposure to traffic-related air pollution. Sci Total Environ. 2014;490:37–43. https://doi.org/10.1016/j.scitotenv.2014.04.111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Nieuwenhuijsen MJ, Khreis H. Car free cities: pathway to healthy urban living. Environ Int. 2016;94:251–62. https://doi.org/10.1016/j.envint.2016.05.032.

    Article  PubMed  CAS  Google Scholar 

  68. C40. Green and healthy streets: fossil-fuel-free streets declaration—planned ACtions to Deliver Commitments. C40. 2018. https://c40-production-images.s3.amazonaws.com/other_uploads/images/1426_C40_FFF_260918.original.pdf?1537953007. Accessed 4.12 2018.

  69. Bliss L. The war on cars, Norwegian edition. 2018. https://www.citylab.com/transportation/2018/05/oslos-race-to-become-a-major-bike-haven/559358/. Accessed 10.10 2018.

  70. Plastrik PCJ. Game changers: bold actiongs by cities to accelerate progress toward carbon neutrality. 2018. http://carbonneutralcities.org/wp-content/uploads/2018/09/CNCA-Game-Changers-Report-2018.pdf. Accessed 10.10 2018.

  71. Garfield L. Cities that are starting to ban cars. Business Insider. 2017. https://www.businessinsider.com/cities-going-car-free-ban-2017-8. Accessed on 10.09.2018.

  72. Khreis H, Nieuwenhuijsen M. Nairobi is planning car-free days. They could bring many benefits. The Conversation. 2018. https://theconversation.com/nairobi-is-planning-car-free-days-they-could-bring-many-benefits-99301. Accessed on 15.10.2018.

  73. Torres A, Sarmiento OL, Stauber C, Zarama R. The Ciclovia and Cicloruta programs: promising interventions to promote physical activity and social capital in Bogotá, Colombia. Am J Public Health. 2013;103(2):e23–30. https://doi.org/10.2105/AJPH.2012.301142.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sarmiento OL, Díaz del Castillo A, Triana CA, Acevedo MJ, Gonzalez SA, Pratt M. Reclaiming the streets for people: insights from Ciclovías Recreativas in Latin America. Prev Med. 2017;103:S34–40. https://doi.org/10.1016/j.ypmed.2016.07.028.

    Article  Google Scholar 

  75. Shu S, Batteate C, Cole B, Froines J, Zhu Y. Air quality impacts of a CicLAvia event in downtown Los Angeles, CA. Environ Pollut. 2016;208:170–6. https://doi.org/10.1016/j.envpol.2015.09.010.

    Article  PubMed  CAS  Google Scholar 

  76. Hipp JA, Bird A, van Bakergem M, Yarnall E. Moving targets: promoting physical activity in public spaces via open streets in the US. Prev Med. 2017;103:S15–20. https://doi.org/10.1016/j.ypmed.2016.10.014.

    Article  Google Scholar 

  77. Jiang W, Boltze M, Groer S, Scheuvens D. Impacts of low emission zones in Germany on air pollution levels. Transportation Research Procedia. 2017;25:3370–82. https://doi.org/10.1016/j.trpro.2017.05.217.

    Article  Google Scholar 

  78. Cavallaro F, Giaretta F, Nocera S. The potential of road pricing schemes to reduce carbon emissions. Transp Policy. 2018;67:85–92. https://doi.org/10.1016/j.tranpol.2017.03.006.

    Article  Google Scholar 

  79. Wu K, Chen Y, Ma J, Bai S, Tang X. Traffic and emissions impact of congestion charging in the central Beijing urban area: a simulation analysis. Transp Res Part D: Transp Environ. 2017;51:203–15. https://doi.org/10.1016/j.trd.2016.06.005.

    Article  Google Scholar 

  80. Millard-Ball A, Weinberger RR, Hampshire RC. Is the curb 80% full or 20% empty? Assessing the impacts of San Francisco’s parking pricing experiment. Transp Res A Policy Pract. 2014;63:76–92. https://doi.org/10.1016/j.tra.2014.02.016.

    Article  Google Scholar 

  81. Ciccone A. Is it all about CO2 emissions? The environmental effects of a tax reform for new vehicles in Norway: University of Oslo, Department of Economics 2014. Accessed on 12.09.2018.

  82. Zimmer A, Koch N. Fuel consumption dynamics in Europe: tax reform implications for air pollution and carbon emissions. Transp Res A Policy Pract. 2017;106:22–50. https://doi.org/10.1016/j.tra.2017.08.006.

    Article  Google Scholar 

  83. Soret A, Guevara M, Baldasano JM. The potential impacts of electric vehicles on air quality in the urban areas of Barcelona and Madrid (Spain). Atmos Environ. 2014;99:51–63. https://doi.org/10.1016/j.atmosenv.2014.09.048.

    Article  CAS  Google Scholar 

  84. Sabel CE, Hiscock R, Asikainen A, Bi J, Depledge M, van den Elshout S, et al. Public health impacts of city policies to reduce climate change: findings from the URGENCHE EU-China project. Environ Health. 2016;15(1):S25. https://doi.org/10.1186/s12940-016-0097-0.

    Article  Google Scholar 

  85. EPA. Sources of greenhouse gas emissions. EPA, EPA.gov. 2016. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#main-content. Accessed on 10.12.2018.

  86. Lorentzen E, Haugneland P, Bu C, Hauge E. Charging infrastructure experience in Norway—the worlds most advanced EV market. 2017. https://wpstatic.idium.no/elbil.no/2016/08/EVS30-Charging-infrastrucure-experiences-in-Norway-paper.pdf. Accessed on 21.10.2018.

  87. Figenbaum E. Perspectives on Norway’s supercharged electric vehicle policy. Environmental Innovation and Societal Transitions. 2017;25:14–34. https://doi.org/10.1016/j.eist.2016.11.002.

    Article  Google Scholar 

  88. Timmers VRJH, Achten PAJ. Non-exhaust PM emissions from electric vehicles. Atmos Environ. 2016;134:10–7. https://doi.org/10.1016/j.atmosenv.2016.03.017.

    Article  CAS  Google Scholar 

  89. Eckart J. Batteries can be part of the fight against climate change—if we do these five things. World Economic Forum. 2017. https://www.weforum.org/agenda/2017/11/battery-batteries-electric-cars-carbon-sustainable-power-energy/. Accessed 28 Nov 2018.

  90. • Milakis D, van Arem B, van Wee B. Policy and society related implications of automated driving: a review of literature and directions for future research. J Intell Transp Syst. 2017;21(4):324–48. https://doi.org/10.1080/15472450.2017.1291351 A study on the air quality benefits of autonomous vehicles.

    Article  Google Scholar 

  91. Woolsgrove C. Cycling and motor vehicle and safety. European Cyclists’ Federation 2017. https://ecf.com/sites/ecf.com/files/ECF_position_RSafety_Programme_2020-2030.pdf

  92. • Sallis JF, Cerin E, Conway TL, Adams MA, Frank LD, Pratt M, et al. Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. Lancet. 2016;387(10034):2207–17. https://doi.org/10.1016/S0140-6736(15)01284-2 A review of active transportation impacts determined by built environment designs.

    Article  PubMed  Google Scholar 

  93. Boulange C, Gunn L, Giles-Corti B, Mavoa S, Pettit C, Badland H. Examining associations between urban design attributes and transport mode choice for walking, cycling, public transport and private motor vehicle trips. J Transp Health. 2017;6:155–66. https://doi.org/10.1016/j.jth.2017.07.007.

    Article  Google Scholar 

  94. • Rojas-Rueda D, de Nazelle A, Andersen ZJ, Braun-Fahrländer C, Bruha J, Bruhova-Foltynova H, et al. Health impacts of active transportation in Europe. PLoS One. 2016;11(3):e0149990. https://doi.org/10.1371/journal.pone.0149990 A health impact analysis of active transportation in European cities.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Mueller N, Rojas-Rueda D, Salmon M, Martinez D, Ambros A, Brand C, et al. Health impact assessment of cycling network expansions in European cities. Prev Med. 2018;109:62–70. https://doi.org/10.1016/j.ypmed.2017.12.011.

    Article  PubMed  Google Scholar 

  96. Rueda S. Superblocks for the design of new cities and renovation of existing ones: Barcelona’s case. In: Nieuwenhuijsen M, Khreis H, editors. Integrating human health into urban and transport planning: a framework. Cham: Springer International Publishing; 2019. p. 135–53.

    Chapter  Google Scholar 

  97. Brass K. Redesigning the grid: Barcelona’s experiment with superblocks. Urban Land Institute. 2017. https://urbanland.uli.org/planning-design/barcelonas-experiment-superblocks/. Accessed October, 29 2017.

  98. Kostandinovic N. The implementation of the superblock programme in Barcelona: filling our streets with life. 2018. https://www.c40.org/case_studies/barcelona-superblocks. Accessed on 12.11.2018.

  99. Skilton S. The best complete street policies of 2016. National Complete Streets Coalition. 2017. https://smartgrowthamerica.org/app/uploads/2017/06/best-complete-streets-policies-of-2016-1.pdf. Accessed on 10.10.2018.

  100. Schlossberg M, Rowell J, Amos D, Sanford K. Rethinking streets: an evidence-based guide to 25 complete street transformations. 2015. Accessed 10.09.2018. https://pages.uoregon.edu/schlossb/ftp/RS/RethinkingStreets_All_V2_high_wCover.pdf. Accessed on 21.10.2018.

  101. Brown BB, Smith KR, Tharp D, Werner CM, Tribby CP, Miller HJ, et al. A complete street intervention promote walking to transit, non-transit walking, and bicycling: a quasi-experimental demonstration of increased use. J Phys Act Health. 2016;13(11):1210–9. https://doi.org/10.1123/jpah.2016-0066.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yifang Zhu RW, Shu S, McGuckin N. Effects of complete streets on travel behavior and exposure to vehicular emissions. 2016. https://www.arb.ca.gov/research/apr/past/11-312.pdf. Accessed 11.09.2018.

  103. Nieuwenhuijsen MJ. Urban and transport planning, environmental exposures and health—new concepts, methods and tools to improve health in cities. Environ Health. 2016;15(Suppl 1):38. https://doi.org/10.1186/s12940-016-0108-1.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Twohig-Bennett C, Jones A. The health benefits of the great outdoors: a systematic review and meta-analysis of greenspace exposure and health outcomes. Environ Res. 2018;166:628–37. https://doi.org/10.1016/j.envres.2018.06.030.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  105. Zijlema WL, Avila-Palencia I, Triguero-Mas M, Gidlow C, Maas J, Kruize H, et al. Active commuting through natural environments is associated with better mental health: results from the PHENOTYPE project. Environ Int. 2018;121:721–7. https://doi.org/10.1016/j.envint.2018.10.002.

    Article  PubMed  Google Scholar 

  106. Yli-Pelkonen V, Setälä H, Viippola V. Urban forests near roads do not reduce gaseous air pollutant concentrations but have an impact on particles levels. Landsc Urban Plan. 2017;158:39–47. https://doi.org/10.1016/j.landurbplan.2016.09.014.

    Article  Google Scholar 

  107. Selmi W, Weber C, Rivière E, Blond N, Mehdi L, Nowak D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For Urban Green. 2016;17:192–201. https://doi.org/10.1016/j.ufug.2016.04.010.

    Article  Google Scholar 

  108. Jayasooriya VM, Ng AWM, Muthukumaran S, Perera BJC. Green infrastructure practices for improvement of urban air quality. Urban For Urban Green. 2017;21:34–47. https://doi.org/10.1016/j.ufug.2016.11.007.

    Article  Google Scholar 

  109. McDonald RKT, Boucher T, Longzhu T, Salem R. Planting healthy air: a global analysis of the role of urban trees in addressing particulate matter pollution and extreme heat. Arlington County: The Nature Conservancy; 2016.

    Google Scholar 

  110. Lee ACK, Jordan HC, Horsley J. Value of urban green spaces in promoting healthy living and wellbeing: prospects for planning. Risk Manag Healthc Policy. 2015;8:131–7. https://doi.org/10.2147/RMHP.S61654.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hartig T, Mitchell R, Vries SD, Frumkin H. Nature and health. Annu Rev Public Health. 2014;35(1):207–28. https://doi.org/10.1146/annurev-publhealth-032013-182443.

    Article  PubMed  Google Scholar 

  112. de Vries S, van Dillen SME, Groenewegen PP, Spreeuwenberg P. Streetscape greenery and health: stress, social cohesion and physical activity as mediators. Soc Sci Med. 2013;94:26–33. https://doi.org/10.1016/j.socscimed.2013.06.030.

    Article  PubMed  Google Scholar 

  113. Batista Ferrer H, Cooper A, Audrey S. Associations of mode of travel to work with physical activity, and individual, interpersonal, organisational, and environmental characteristics. J Transp Health. 2018;9:45–55. https://doi.org/10.1016/j.jth.2018.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Patterson R, Webb E, Millett C, Laverty AA. Physical activity accrued as part of public transport use in England. J Public Health. 2018:fdy099. https://doi.org/10.1093/pubmed/fdy099.

  115. Martin A, Panter J, Suhrcke M, Ogilvie D. Impact of changes in mode of travel to work on changes in body mass index: evidence from the British Household Panel Survey. J Epidemiol Community Health. 2015;69(8):753–61. https://doi.org/10.1136/jech-2014-205211.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Flint E, Webb E, Cummins S. Change in commute mode and body-mass index: prospective, longitudinal evidence from UK Biobank. Lancet Public Health. 2016;1(2):e46–55. https://doi.org/10.1016/S2468-2667(16)30006-8.

    Article  PubMed  PubMed Central  Google Scholar 

  117. USDOT. Cleaner air—relationship to public health. USDOT, Transportation.gov. 2015. https://www.transportation.gov/mission/health/cleaner-air. Accessed October 23 2018.

  118. FTA. Transit’s role in environmental sustainability. 2016. https://www.transit.dot.gov/regulations-and-guidance/environmental-programs/transit-environmental-sustainability/transit-role. Accessed October 15 2018.

  119. Basagaña X, Triguero-Mas M, Agis D, Pérez N, Reche C, Alastuey A, et al. Effect of public transport strikes on air pollution levels in Barcelona (Spain). Sci Total Environ. 2018;610–611:1076–82. https://doi.org/10.1016/j.scitotenv.2017.07.263.

    Article  PubMed  CAS  Google Scholar 

  120. Bauernschuster S, Hener T, Rainer H. When labor disputes bring cities to a standstill: the impact of public transit strikes on traffic, accidents, air pollution, and health. Am Econ J Econ Pol. 2017;9(1):1–37. https://doi.org/10.1257/pol.20150414.

    Article  Google Scholar 

  121. Gilliland F, Avol E, McConnell R, Berhane K, Gauderman WJ, Lurman F et al. The effects of policy-driven air quality improvements on children’s respiratory health: Health Eff Inst. 2017. Accessed on 10.10.2018.

  122. Zhang J, Zhu T, Kipen H, Wang G, Huang W, Rich D, et al. Cardiorespiratory biomarker responses in healthy young adults to drastic air quality changes surrounding the 2008 Beijing Olympics. Res Rep Health Eff Inst. 2013;(174):5–174.

  123. Berger J. Copenhagen, striving to be carbon-neutral: part 1, the economic payoffs. 2017. https://www.huffingtonpost.com/entry/copenhagen-striving-to-be-carbon-neutral-part-1-the_us_589ba337e4b061551b3e0737. Accessed on 11.10.2018.

  124. Copenhagen Co. Copenhagen: city of cyclists facts and figures 2017. http://www.cycling-embassy.dk/2017/07/04/copenhagen-city-cyclists-facts-figures-2017/. Accessed on 10.09.2018.

  125. Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O, Banister D, et al. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet. 2009;374(9705):1930–43. https://doi.org/10.1016/S0140-6736(09)61714-1.

    Article  PubMed  Google Scholar 

  126. • Franco JF, Segura JF, Mura I. Air pollution alongside bike-paths in Bogotá-Colombia. Front Environ Sci. 2016;4(77). https://doi.org/10.3389/fenvs.2016.00077 This study details the air quality and physical activity benefits of a successful active transportation policy.

  127. Glazener A, Ramani T, Zietsman J, Nieuwenhuijsen M, Mindell JS, Khreis H. Mobility and public health: a conceptual model and literature review. In Progress. 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haneen Khreis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Air Pollution and Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazener, A., Khreis, H. Transforming Our Cities: Best Practices Towards Clean Air and Active Transportation. Curr Envir Health Rpt 6, 22–37 (2019). https://doi.org/10.1007/s40572-019-0228-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-019-0228-1

Keywords

Navigation