Skip to main content
Log in

Front propagation in reaction-diffusion systems with anomalous diffusion

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

A numerical study of the role of anomalous diffusion in front propagation in reaction-diffusion systems is presented. Three models of anomalous diffusion are considered: fractional diffusion, tempered fractional diffusion, and a model that combines fractional diffusion and regular diffusion. The reaction kinetics corresponds to a Fisher–Kolmogorov nonlinearity. The numerical method is based on a finite-difference operator splitting algorithm with an explicit Euler step for the time advance of the reaction kinetics, and a Crank–Nicholson semi-implicit time step for the transport operator. The anomalous diffusion operators are discretized using an upwind, flux-conserving, Grunwald–Letnikov finite-difference scheme applied to the regularized fractional derivatives. With fractional diffusion of order \(\alpha \), fronts exhibit exponential acceleration, \(a_L(t) \sim e^{\gamma t/\alpha }\), and develop algebraic decaying tails, \(\phi \sim 1/x^{\alpha }\). In the case of tempered fractional diffusion, this phenomenology prevails in the intermediate asymptotic regime \(\left( \chi t \right) ^{1/\alpha } \ll x \ll 1/\lambda \), where \(1/\lambda \) is the scale of the tempering. Outside this regime, i.e., for \(x > 1/\lambda \), the tail exhibits the tempered decay \(\phi \sim e^{-\lambda x}/x^{\alpha +1}\), and the front velocity approaches the terminal speed \(v_*= \left( \gamma -\lambda ^\alpha \chi \right) / \lambda \). Of particular interest is the study of the interplay of regular and fractional diffusions. It is shown that the main role of regular diffusion is to delay the onset of front acceleration. In particular, the crossover time, \(t_c\), to transition to the accelerated fractional regime exhibits a logarithmic scaling of the form \(t_c \sim \log \left( \chi _d/\chi _f\right) \) where \(\chi _d\) and \(\chi _f\) are the regular and fractional diffusivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baeumer, B., Kovacs, M., Meerschaert, M.: Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Bull. Math. Biol. 69, 2281–2297 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brockmann, D., Hufnagel, L.: Front propagation in reaction-superdiffusion dynamics: taming Lévy flights with fluctuations. Phys. Rev. Lett. 98, 178301 (2007)

    Article  Google Scholar 

  3. Cabré, X., Roquejoffre, J.-M.: Front propagation in Fisher-KPP equations with fractional diffusion. Commun. Math. Phys. 320, 679–722 (2013)

    Google Scholar 

  4. Cartea, A., del-Castillo-Negrete, D.: Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 76, 041105 (2007)

    Article  Google Scholar 

  5. del-Castillo-Negrete, D.: Asymmetric transport and non-Gaussian statistics of passive scalars in vortices in shear. Phys. Fluids 10(3), 576–594 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. del-Castillo-Negrete, D.: Fractional diffusion models of nonlocal transport. Phys. Plasmas 13, 082308 (2006)

    Article  MathSciNet  Google Scholar 

  7. del-Castillo-Negrete, D.: Nondiffusive transport modeling: statistical basis and applications. In: Benkadda, S., (ed.) Turbulent Transport in Fusion Plasma.s First ITER International Summer School. AIP Conference Proceedings 1013, Melville, New York (2008)

  8. del-Castillo-Negrete, D.: Truncation effects in superdiffusive front propagation with Lévy flights. Phys. Rev. E. 79, 031120 (2009)

    Article  Google Scholar 

  9. del-Castillo-Negrete, D.: Anomalous transport in the presence of truncated Lévy flights. In: Klafter, J., Lim, S.C., Metzler, R. (eds.) Fractional Dynamics: Recent Advances. World Scientific, Singapore (2011)

  10. del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Front dynamics in reaction-diffusion systems with Lévy flights: a fractional diffusion approach. Phys. Rev. Lett. 91, 018302 (2003)

    Article  Google Scholar 

  11. del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.: Non-diffusive transport in plasma turbulence: a fractional diffusion approach. Phys. Rev. Lett. 94, 065003 (2005)

    Article  Google Scholar 

  12. del-Castillo-Negrete, D., Mantica, P., Naulin, V., Rasmussen, J.: Fractional diffusion models of non-local perturbative transport: numerical results and applications to JET experiments. Nucl. Fus. 48, 75009 (2008)

    Article  Google Scholar 

  13. Fedotov, S.: Non-Markovian random walks and nonlinear reactions: subdiffusion and propagating fronts. Phys. Rev. E 81, 011117 (2010)

    Article  Google Scholar 

  14. Hanert, E.: Front dynamics in a two-species competition model driven by Lévy flights. J. Theo. Biol. 300, 134–142 (2012)

    Article  MathSciNet  Google Scholar 

  15. Hernandez, D., Barrio, R., Varea, C.: Wave-front dynamics in systems with directional anomalous diffusion. Phys. Rev. E 74(4), 046116 (2006)

    Article  Google Scholar 

  16. Mancinelli, R., Vergni, D., Vulpiani, A.: Superfast front propagation in reactive systems with non-Gaussian diffusion. Europhys. Lett. 60, 532–538 (2002)

    Article  Google Scholar 

  17. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Murray, J.D.: Mathematical Biology. Springer, New York (1989)

    Book  MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  20. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  21. Saxena, R.K., Mathai, A.M., Haubold, H.J.: Fractional reaction-diffusion equations. Astrophys. Space Sci. 305(3), 289–296 (2006)

    Article  MATH  Google Scholar 

  22. Sokolov, I.M., Schmidt, M.G.W., Sagues, F.: Reaction-subdiffusion equations. Phys. Rev. E 73(3), 031102 (2006)

    Google Scholar 

  23. Solomon, T.H., Weeks, E.R., Swinney, H.L.: Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Phys. Rev. Lett. 71, 3975 (1993)

    Article  Google Scholar 

  24. Volpert, V.A., Nec, Y., Nepomnyashchy, A.A.: Exact solutions in front propagation problems with superdiffusion. Physica D 239(3–4), 134–144 (2010)

    Google Scholar 

  25. Zanette, D.H.: Wave fronts in bistable reactions with anomalous Lévy-flight diffusion. Phys. Rev. E 55, 1181 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Office of Fusion Energy Sciences of the US Department of Energy at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S.Department of Energy under contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. del-Castillo-Negrete.

Additional information

In celebration of “Mathematics of Planet Earth-2013”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del-Castillo-Negrete, D. Front propagation in reaction-diffusion systems with anomalous diffusion. Bol. Soc. Mat. Mex. 20, 87–105 (2014). https://doi.org/10.1007/s40590-014-0008-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-014-0008-8

Mathematics Subject Classification

Navigation