Skip to main content
Log in

Effective software solutions for 4D printing: A review and proposal

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In 4D printing, a target 3D object that can self-transform or self-assemble over time is created using a printer with smart materials. Since the advent of 4D printing, much research has been conducted on smart materials and application of 4D printing in diverse areas. However, research and development of 4D printing software is very limited due to the fact that 4D printing technology is still a novelty. Nevertheless, the time characteristics of 4D printing require appropriate 4D printing software to produce effective 4D printing outputs. In this article, we first introduce 4D printing technology and discuss its application in various fields. Then, we focus on the software required for 4D printing. More specifically, we present six types of software solutions needed to fully support corresponding stages in the 4D printing process: simulation, modeling, slicing, host/firmware, monitoring, and printing management software (PMS), respectively. We discuss how each software solution can sufficiently carry out the designated functions at each stage of the 4D printing process and propose that these software solutions can together provide all of the required operations for 4D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ko, H., Moon, S. K., and Hwang, J., “Design for Additive Manufacturing in Customized Products,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2369–2375, 2015.

    Article  Google Scholar 

  2. Moon, S. K., Tan, Y. E., Hwang, J., and Yoon, Y.-J., “Application of 3D Printing Technology for Designing Light-Weight Unmanned Aerial Vehicle Wing Structures,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 3, pp. 223–228, 2014.

    Article  Google Scholar 

  3. Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., et al., “Smart Manufacturing: Past Research, Present Findings, and Future Directions,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 111–128, 2016.

    Article  Google Scholar 

  4. Kim, M.-S., Chu, W.-S., Kim, Y.-M., Avila, A. P. G., and Ahn, S.-H., “Direct Metal Printing of 3D Electrical Circuit Using Rapid Prototyping,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 5, pp. 147–150, 2009.

    Article  Google Scholar 

  5. Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., et al., “Hybrid Manufacturing in Micro/Nano Scale: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 75–92, 2014.

    Article  Google Scholar 

  6. Kim, S., Lee, J., and Choi, B., “3D Printed Fluidic Valves for Remote Operation Via External Magnetic Field,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 7, pp. 937–942, 2016.

    Article  Google Scholar 

  7. Ahn, D.-G., “Direct Metal Additive Manufacturing Processes and their Sustainable Applications for Green Technology: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 4, pp. 381–395, 2016.

    Article  Google Scholar 

  8. Chua, Z. Y., Ahn, I. H., and Moon, S. K., “Process Monitoring and Inspection Systems in Metal Additive Manufacturing: Status and Applications,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 4, No. 2, pp. 235–245, 2017.

    Article  Google Scholar 

  9. Anwar, H., Din, I., and Park, K., “Projector Calibration for 3D Scanning Using Virtual Target Images,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 1, pp. 125–131, 2012.

    Article  Google Scholar 

  10. Kim, L.-S., Nakahashi, K., Xu, Z.-Z., Xiao, H., and Lyu, S.-K., “Three-Dimensional Building-Cube Method for Inviscid Compressible Flow Computations,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 13, pp. 2673–2681, 2015.

    Article  Google Scholar 

  11. Jang, S. H., Oh, S. T., Lee, I. H., Kim, H.-C., and Cho, H. Y., “3-Dimensional Circuit Device Fabrication Process Using Stereolithography and Direct Writing,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1361–1367, 2015.

    Article  Google Scholar 

  12. Lee, C.-M., Woo, W.-S., Baek, J.-T., and Kim, E.-J., “Laser and arc Manufacturing Processes: A Review,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 7, pp. 973–985, 2016.

    Article  Google Scholar 

  13. Yoon, H.-S., Lee, J.-Y., Kim, H.-S., Kim, M.-S., Kim, E.-S., et al., “A Comparison of Energy Consumption in Bulk Forming, Subtractive, and Additive Processes: Review and Case Study,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 3, pp. 261–279, 2014.

    Article  Google Scholar 

  14. Qin, Z., Compton, B. G., Lewis, J. A., and Buehler, M. J., “Structural Optimization of 3D-Printed Synthetic Spider Webs for High Strength,” Nature Communications, Vol. 6, Article No. 7038, 2015.

    Google Scholar 

  15. Ko, H. J., Noh, K. S., and Lee, Y. G., “Survey of Materials for 4D Printing,” Proc. of the Korean Society of Mechanical Engineers Spring & Autumn Conference, pp. 43–43, 2016.

    Google Scholar 

  16. Ge, Q., Dunn, C. K., Qi, H. J., and Dunn, M. L., “Active Origami by 4D Printing,” Smart Materials and Structures, Vol. 23, No. 9, Paper No. 094007, 2014.

    Google Scholar 

  17. Ge, Q., Qi, H. J., and Dunn, M. L., “Active Materials by Four-Dimension Printing,” Applied Physics Letters, Vol. 103, No. 13, Paper No. 131901, 2013.

    Google Scholar 

  18. Khoo, Z. X., Teoh, J. E. M., Liu, Y., Chua, C. K., Yang, S., et al., “3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing,” Virtual and Physical Prototyping, Vol. 10, No. 3, pp. 103–122, 2015.

    Article  Google Scholar 

  19. Monzón, M., Paz, R., Pei, E., Ortega, F., Suárez, L., et al., “4D Printing: Processability and Measurement of Recovery Force in Shape Memory Polymers,” The International Journal of Advanced Manufacturing Technology, Vol. 89, No. 5, pp. 1827–1836, 2017.

    Article  Google Scholar 

  20. Huang, L., Jiang, R., Wu, J., Song, J., Bai, H., et al., “Ultrafast Digital Printing Toward 4D Shape Changing Materials,” Advanced Materials, Vol. 29, No. 7, DOI: 10.1002/adma.201605390, 2017.

    Google Scholar 

  21. Buffington, J., “The Future of Manufacturing: An End to Mass Production,” Frictionless Markets, pp. 49–65, 2016.

    Chapter  Google Scholar 

  22. Ghi, A. and Rossetti, F., “4D Printing: An Emerging Technology in Manufacturing?” Digitally Supported Innovation, pp. 171–178, 2016.

    Chapter  Google Scholar 

  23. Campbell, T. A., Tibbits, B., and Garrett, B., “The Next Wave: 4D Printing Programming the Material World,” Atlantic Council Report, 2014.

    Google Scholar 

  24. Pei, E., “4D Printing-Revolution or Fad?” Assembly Automation, Vol. 34, No. 2, pp. 123–127, 2014.

    Article  Google Scholar 

  25. Choi, J., Kwon, O.-C., Jo, W., Lee, H. J., and Moon, M.-W., “4D Printing Technology: A Review,” 3D Printing and Additive Manufacturing, Vol. 2, No. 4, pp. 159–167, 2015.

    Article  Google Scholar 

  26. Raviv, D., Zhao, W., McKnelly, C., Papadopoulou, A., Kadambi, A., et al., “Active Printed Materials for Complex Self-Evolving Deformations,” Scientific Reports, Vol. 4, Article No. 7422, 2014.

    Google Scholar 

  27. Mao, Y., Yu, K., Isakov, M. S., Wu, J., Dunn, M. L., et al., “Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers,” Scientific Reports, Vol. 5, Article No. 13616, 2015.

    Google Scholar 

  28. RNCOS, “Global 4D Printing Market Outlook 2027,” http://www.rncos.com/ (Accessed 22 JUN 2017)

    Google Scholar 

  29. MarketsandMarkets, “4D Printing Market by Material, End User & Geography-Global Trends & Forecasts to 2019-2025,” 2015.

    Google Scholar 

  30. Bodaghi, M., Damanpack, A., and Liao, W., “Self-Expanding/Shrinking Structures by 4D Printing,” Smart Materials and Structures, Vol. 25, No. 10, Paper No. 105034, 2016.

    Google Scholar 

  31. Coulter, F. B. and Ianakiev, A., “4D Printing Inflatable Silicone Structures,” 3D Printing and Additive Manufacturing, Vol. 2, No. 3, pp. 140–144, 2015.

    Article  Google Scholar 

  32. Pei, E., “4D Printing: Dawn of an Emerging Technology Cycle,” Assembly Automation, Vol. 34, No. 4, pp. 310–314, 2014.

    Article  Google Scholar 

  33. Ahn, S.-H., Lee, K.-T., Kim, H.-J., Wu, R., Kim, J.-S., et al., “Smart Soft Composite: An Integrated 3D Soft Morphing Structure Using Bend-Twist Coupling of Anisotropic Materials,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 4, pp. 631–634, 2012.

    Article  Google Scholar 

  34. Alt, H. and Godau, M., “Computing the Fréchet Distance between Two Polygonal Curves,” International Journal of Computational Geometry & Applications, Vol. 5, Nos. 1-2, pp. 75–91, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  35. Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., and Wenk, C., “Fréchet Distance for Curves, Revisited,” Algorithms-ESA 2006, pp. 52–63, 2006.

    Chapter  Google Scholar 

  36. Maheshwari, A. and Yi, J., “On Computing Fréchet Distance of Two Paths on a Convex Polyhedron,” Proc. of the Euro CG, pp. 41–44, 2005.

    Google Scholar 

  37. Kwok, T.-H., Wang, C. C., Deng, D., Zhang, Y., and Chen, Y., “Four-Dimensional Printing for Freeform Surfaces: Design Optimization of Origami and Kirigami Structures,” Journal of Mechanical Design, Vol. 137, No. 11, Paper No. 111413, 2015.

    Google Scholar 

  38. Bakarich, S. E., Gorkin, R., and Spinks, G. M., “4D Printing with Mechanically Robust, Thermally Actuating Hydrogels,” Macromolecular Rapid Communications, Vol. 36, No. 12, pp. 1211–1217, 2015.

    Article  Google Scholar 

  39. Teoh, J., Chua, C. K., Liu, Y., An, J., and Li, Y., “Preliminary Investigation of 4D Printing Technology for Deployable UAV Development,” Proc. of the 2nd International Conference on Progress in Additive Manufacturing, 2016.

    Google Scholar 

  40. Naficy, S., Gately, R., Gorkin, R., Xin, H., and Spinks, G. M., “4D Printing of Reversible Shape Morphing Hydrogel Structures,” Macromolecular Materials and Engineering, Vol. 302, No. 1, DOI: 10.1002/mame.201600212, 2017.

    Google Scholar 

  41. Teoh, J., An, J., Chua, C., Lv, M., Krishnasamy, V., et al., “Hierarchically Self-Morphing Structure through 4D Printing,” Virtual and Physical Prototyping, Vol. 12, No. 1, pp. 61–68, 2017.

    Article  Google Scholar 

  42. Okuzaki, H., Kuwabara, T., Funasaka, K., and Saido, T., “Humidity-Sensitive Polypyrrole Films for Electro-Active Polymer Actuators,” Advanced Functional Materials, Vol. 23, No. 36, pp. 4400–4407, 2013.

    Article  Google Scholar 

  43. Lu, H., Liu, Y., Gou, J., Leng, J., and Du, S., “Electrical Properties and Shape-Memory Behavior of Self-Assembled Carbon Nanofiber Nanopaper Incorporated with Shape-Memory Polymer,” Smart Materials and Structures, Vol. 19, No. 7, Paper No. 075021, 2010.

    Google Scholar 

  44. Hu, Y., Wu, G., Lan, T., Zhao, J., Liu, Y., et al., “A Graphene-Based Bimorph Structure for Design of High Performance Photoactuators,” Advanced Materials, Vol. 27, No. 47, pp. 7867–7873, 2015.

    Article  Google Scholar 

  45. Mu, J., Hou, C., Wang, H., Li, Y., Zhang, Q., et al., “Origami-Inspired Active Graphene-Based Paper for Programmable Instant Self-Folding Walking Devices,” Science Advances, Vol. 1, No. 10, DOI: 10.1126/sciadv.1500533, 2015.

    Google Scholar 

  46. Deng, D. and Chen, Y., “Origami-Based Self-Folding Structure Design and Fabrication Using Projection Based Stereolithography,” Journal of Mechanical Design, Vol. 137, No. 2, Paper No. 021701, 2015.

    Google Scholar 

  47. Gou, M., Qu, X., Zhu, W., Xiang, M., Yang, J., et al., “Bio-Inspired Detoxification Using 3D-Printed Hydrogel Nanocomposites,” Nature Communications, Vol. 5, DOI: 10.1038/ncomms4774, 2014.

    Google Scholar 

  48. Nguyen, D. G., Funk, J., Robbins, J. B., Crogan-Grundy, C., Presnell, S. C., et al., “Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity in Vitro,” PloS One, Vol. 11, No. 7, DOI: 10.1371/journal.pone.0158674, 2016.

    Google Scholar 

  49. Chae, M. P., Hunter-Smith, D. J., De-Silva, I., Tham, S., Spychal, R. T., et al., “Four-Dimensional (4D) Printing: A New Evolution in Computed Tomography-Guided Stereolithographic Modeling. Principles and Application,” Journal of Reconstructive Microsurgery, Vol. 31, No. 6, pp. 458–463, 2015.

    Article  Google Scholar 

  50. Ho, C. M. B., Ng, S. H., and Yoon, Y.-J., “A Review on 3D Printed Bioimplants,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 5, pp. 1035–1046, 2015.

    Article  Google Scholar 

  51. Kapsali, V., Toomey, A., Oliver, R., and Tandler, L., “Biomimetic Spatial and Temporal (4D) Design and Fabrication,” Proc. of the Conference on Biomimetic and Biohybrid Systems, pp. 387–389, 2013.

    Chapter  Google Scholar 

  52. Vatani, M., Lu, Y., Engeberg, E. D., and Choi, J.-W., “Combined 3D Printing Technologies and Material for Fabrication of Tactile Sensors,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1375–1383, 2015.

    Article  Google Scholar 

  53. Tsai, E. Y., “4D Printing: Towards Biomimetic Additive Manufacturing,” Massachusetts Institute of Technology, 2012.

    Google Scholar 

  54. Mulakkal, M. C., Seddon, A. M., Whittell, G., Manners, I., and Trask, R. S., “4D Fibrous Materials: Characterising the Deployment of Paper Architectures,” Smart Materials and Structures, Vol. 25, No. 9, Paper No. 095052, 2016.

    Google Scholar 

  55. Bakarich, S. E., Gorkin, R., Naficy, S., Gately, R., and Spinks, G. M., “3D/4D Printing Hydrogel Composites: A Pathway to Functional Devices,” MRS Advances, Vol. 1, No. 8, pp. 521–526, 2016.

    Article  Google Scholar 

  56. Gao, B., Yang, Q., Zhao, X., Jin, G., Ma, Y., et al., “4D Bioprinting for Biomedical Applications,” Trends in Biotechnology, Vol. 34, No. 9, pp. 746–756, 2016.

    Article  Google Scholar 

  57. Miao, S., Zhu, W., Castro, N. J., Leng, J., and Zhang, L. G., “Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications,” Tissue Engineering Part C: Methods, Vol. 22, No. 10, pp. 952–963, 2016.

    Article  Google Scholar 

  58. Kuribayashi-Shigetomi, K., Onoe, H., and Takeuchi, S., “Cell Origami: Self-Folding of Three-Dimensional Cell-Laden Microstructures Driven by Cell Traction Force,” PloS One, Vol. 7, No. 12, DOI: 10.1371/journal.pone.0051085, 2012.

    Google Scholar 

  59. Li, Y.-C., Zhang, Y. S., Akpek, A., Shin, S. R., and Khademhosseini, A., “4D Bioprinting: The Next-Generation Technology for Biofabrication Enabled by Stimuli-Responsive Materials,” Biofabrication, Vol. 9, No. 1, Paper No. 012001, 2016.

    Google Scholar 

  60. Malda, J., Visser, J., Melchels, F. P., Jüngst, T., Hennink, W. E., et al., “25th Anniversary Article: Engineering Hydrogels for Biofabrication,” Advanced Materials, Vol. 25, No. 36, pp. 5011–5028, 2013.

    Article  Google Scholar 

  61. Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., and Lewis, J. A., “Biomimetic 4D Printing,” Nature Materials, Vol. 15, No. 4, pp. 413–418, 2016.

    Article  Google Scholar 

  62. Miao, S., Zhu, W., Castro, N. J., Nowicki, M., Zhou, X., et al., “4D Printing Smart Biomedical Scaffolds with Novel Soybean Oil Epoxidized Acrylate,” Scientific Reports, Vol. 6, Article Number: 27226, 2016.

    Google Scholar 

  63. Arslan-Yildiz, A., El Assal, R., Chen, P., Guven, S., Inci, F., et al., “Towards Artificial Tissue Models: Past, Present, and Future of 3D Bioprinting,” Biofabrication, Vol. 8, No. 1, Paper No. 014103, 2016.

    Google Scholar 

  64. Lee, V. K., Kim, D. Y., Ngo, H., Lee, Y., Seo, L., et al., “Creating Perfused Functional Vascular Channels Using 3D Bio-Printing Technology,” Biomaterials, Vol. 35, No. 28, pp. 8092–8102, 2014.

    Article  Google Scholar 

  65. Inzana, J. A., Olvera, D., Fuller, S. M., Kelly, J. P., Graeve, O. A., et al., “3D Printing of Composite Calcium Phosphate and Collagen Scaffolds for Bone Regeneration,” Biomaterials, Vol. 35, No. 13, pp. 4026–4034, 2014.

    Article  Google Scholar 

  66. Murphy, S. V. and Atala, A., “3D Bioprinting of Tissues and Organs,” Nature Biotechnology, Vol. 32, No. 8, pp. 773–785, 2014.

    Article  Google Scholar 

  67. Mironov, V., Reis, N., and Derby, B., “Bioprinting: A Beginning,” Tissue Engineering, Vol. 12, No. 4, pp. 631–634, 2006.

    Article  Google Scholar 

  68. Nervous System, “Kinematics Dress,” http://n-e-r-v-o-u-s.com/ (Accessed 22 JUN 2017)

    Google Scholar 

  69. Frost & Sullivan, “Advances in 4D Printing (Techniacl Insights),” 2014.

    Google Scholar 

  70. Mao, Y., Ding, Z., Yuan, C., Ai, S., Isakov, M., et al., “3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials,” Scientific Reports, Vol. 6, Article No. 24761, 2016.

    Google Scholar 

  71. Wu, J., Yuan, C., Ding, Z., Isakov, M., Mao, Y., et al., “Multi-Shape Active Composites by 3D Printing of Digital Shape Memory Polymers,” Scientific Reports, Vol. 6, Article No. 24224, 2016.

    Google Scholar 

  72. Mao, Y., Yu, K., Isakov, M. S., Wu, J., Dunn, M. L., et al., “Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers,” Scientific Reports, Vol. 5, Article No. 13616, 2015.

    Google Scholar 

  73. Kokkinis, D., Schaffner, M., and Studart, A. R., “Multimaterial Magnetically Assisted 3D Printing of Composite Materials,” Nature Communications, Vol. 6, Article No. 8643, 2015.

    Google Scholar 

  74. Autodesk Research, “4D Printing,” https://www.autodeskresearch. com/projects/4dprinting (Accessed 22 JUN 2017)

    Google Scholar 

  75. Tibbits, S., McKnelly, C., Olguin, C., Dikovsky, D., and Hirsch, S., “4D Printing and Universal Transformation,” ACADIA 14: Design Agency, pp. 539–548, 2014.

    Google Scholar 

  76. Tibbits, S., “4D Printing: Multi-Material Shape Change,” Architectural Design, Vol. 84, No. 1, pp. 116–121, 2014.

    Article  Google Scholar 

  77. Kwok, T.-H., Wang, C. C., Deng, D., Zhang, Y., and Chen, Y., “Four-Dimensional Printing for Freeform Surfaces: Design Optimization of Origami and Kirigami Structures,” Journal of Mechanical Design, Vol. 137, No. 11, Paper No. 111413, 2015.

    Google Scholar 

  78. Kuksenok, O. and Balazs, A. C., “Stimuli-Responsive Behavior of Composites Integrating Thermo-Responsive Gels with Photo-Responsive Fibers,” Materials Horizons, Vol. 3, No. 1, pp. 53–62, 2016.

    Article  Google Scholar 

  79. Gwangju Institute of Science and Technology, “Development of a Contents Configuration Management System and a Simulator for 3D Printing Using Smart Materials” https://www.gist.ac.kr/ (Accessed 22 JUN 2017)

    Google Scholar 

  80. Yun, G.-Y. and Lee, Y.-G., “Service-Oriented Web for Transformable 4D Printing Components,” Korean Journal of Computational Design and Engineering, Vol. 21, No. 2, pp. 122–129, 2016.

    Article  Google Scholar 

  81. Ham, S. I. and Lee, Y. G., “A Study on the Automatic Design of 4D Printing to Follow the Target Shape,” Korean Journal of Computational Design and Engineering,” Vol. 21, No. 3, pp. 306–312, 2016.

    Article  Google Scholar 

  82. Noh, K.-S., Seo, H.-W., and Lee, Y.-G., “3D Printing Structures that Exhibit Torsions,” Proc. of the 2nd International Conference on Progress in Additive Manufacturing, 2016.

    Google Scholar 

  83. Gibson, I., Rosen, D., and Stucker, B., “Software Issues for Additive Manufacturing,” Additive Manufacturing Technologies, pp. 351–374, 2015.

    Chapter  Google Scholar 

  84. Hiller, J. D. and Lipson, H., “STL 2.0: A Proposal for a Universal Multi-Material Additive Manufacturing File Format,” Proc. of the Solid Freeform Fabrication Symposium, pp. 266–278, 2009.

    Google Scholar 

  85. Wikipedia, “Additive Manufacturing File Format,” https://en.wikipedia.org/wiki/Additive_Manufacturing_File_Format/ (Accessed 22 JUN 2017)

    Google Scholar 

  86. Sivagurunathan, Y., Harman, M., and Danicic, S., “Slicing; I/O and the Implicit State,” Proc. of the 3rd International Workshop on Automatic Debugging, pp. 59–67, 1997.

    Google Scholar 

  87. Tip, F., “A Survey of Program Slicing Techniques,” Journal of Programming Languages, Vol. 3, pp. 121–189, 1995.

    Google Scholar 

  88. Shah, A., Raza, A., Hassan, B., and Shah, A., “A Review of Slicing Techniques in Software Engineering,” Proc. of the International Conference on Engineering and Technology, pp. 1–15, 2015.

    Google Scholar 

  89. Pyo, S. H. and Choi, J. S., “Trends of 3D Printing Software Technologies,” Electronics and Telecommunications Trends, Vol. 29, No. 1, pp. 1–10, 2014.

    Google Scholar 

  90. Ding, D., Pan, Z., Cuiuri, D., and Li, H., “A Practical Path Planning Methodology for Wire and Arc Additive Manufacturing of Thin-Walled Structures,” Robotics and Computer-Integrated Manufacturing, Vol. 34, pp. 8–19, 2015

    Article  Google Scholar 

  91. Ding, D., Pan, Z., Cuiuri, D., Li, H., Van Duin, S., et al., “Bead Modelling and Implementation of Adaptive Mat Path in Wire and Arc Additive Manufacturing,” Robotics and Computer-Integrated Manufacturing, Vol. 39, pp. 32–42, 2016.

    Article  Google Scholar 

  92. Ding, D., Shen, C., Pan, Z., Cuiuri, D., Li, H., et al., “Towards an Automated Robotic Arc-Welding-Based Additive Manufacturing System from CAD to Finished Part,” Computer-Aided Design, Vol. 73, pp. 66–75, 2016.

    Article  Google Scholar 

  93. Yaman, U., Butt, N., Sacks, E., and Hoffmann, C., “Slice Coherence in a Query-Based Architecture for 3D Heterogeneous Printing,” Computer-Aided Design, Vol. 75, pp. 27–38, 2016.

    Article  Google Scholar 

  94. Steuben, J. C., Iliopoulos, A. P., and Michopoulos, J. G., “Implicit Slicing for Functionally Tailored Additive Manufacturing,” Computer-Aided Design, Vol. 77, pp. 107–119, 2016.

    Article  Google Scholar 

  95. Ding, D., Pan, Z., Cuiuri, D., Li, H., Larkin, N., et al., “Automatic Multi-Direction Slicing Algorithms for Wire Based Additive Manufacturing,” Robotics and Computer-Integrated Manufacturing, Vol. 37, pp. 139–150, 2016.

    Article  Google Scholar 

  96. Kim, H.-J., Wie, K.-H., Ahn, S.-H., Choo, H.-S., and Jun, C.-S., “Slicing Algorithm for Polyhedral Models Based on Vertex Shifting,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 5, pp. 803–807, 2010.

    Article  Google Scholar 

  97. Fabian Schirig, “Slicing Algorithms for 3D-Printing,” http://blog.hkfs. de/ (Accessed 22 JUN 2017)

    Google Scholar 

  98. Abe, T. and Sasahara, H., “Development of the Shell Structures Fabrication CAM System for Direct Metal Lamination Using Arc Discharge-Lamination Height Error Compensation by Torch Feed Speed Control,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 1, pp. 171–176, 2015.

    Article  Google Scholar 

  99. Ryu, S. A., Lee, S. K., Park, J. O., An, E. J., and Lee, H. S., “A Preprocessor Functionality for 3D Metal Printing Process,” Proc. of the Society of CAD/CAM Conference, pp. 390–394, 2013.

    Google Scholar 

  100. Subdivision Surfaces, “Loop Subdivision,” http://www.geocities.ws/jason_zxu/subdivision/mid-subdivision.html (Accessed 22 JUN 2017)

    Google Scholar 

  101. Rypl, D. and Bittnar, Z., “Generation of Computational Surface Meshes of STL Models,” Journal of Computational and Applied Mathematics, Vol. 192, No. 1, pp. 148–151, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  102. Chui, C. K. and Jiang, Q., “Surface Subdivision Schemes Generated by Refinable Bivariate Spline Function Vectors,” Applied and Computational Harmonic Analysis, Vol. 15, No. 2, pp. 147–162, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  103. Dyn, N., Levine, D., and Gregory, J. A., “A Butterfly Subdivision Scheme for Surface Interpolation with Tension Control,” ACM Transactions on Graphics, Vol. 9, No. 2, pp. 160–169, 1990.

    Article  MATH  Google Scholar 

  104. Zorin, D., Schröder, P., and Sweldens, W., “Interactive Multiresolution Mesh Editing,” Proc. of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 259–268, 1997.

    Google Scholar 

  105. Zorin, D., “Subdivision Zoo,” Subdivision for Modeling and Animation, Schröder, Peter and Zorin, Denis, pp. 65–104, 2000.

    Google Scholar 

  106. Velho, L. and Zorin, D., “4-8 Subdivision,” Computer Aided Geometric Design, Vol. 18, No. 5, pp. 397–427, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  107. Zorin, D., Schröder, P., and Sweldens, W., “Interpolating Subdivision for Meshes with Arbitrary Topology,” Proc. of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 189–192, 1996.

    Google Scholar 

  108. Materialise, “Magics 3D Print Suite” http://www.materialise.com/ (Accessed 22 JUN 2017)

    Google Scholar 

  109. All3DP, “20 Best 3D Printing Software Tools (Most are Free),” https://all3dp.com/best-3d-printing-software-tools/ (Accessed 22 JUN 2017)

    Google Scholar 

  110. All3DP, “16 Best Slicer Software Tools for 3D Printers (Most are Free),” https://all3dp.com/best-3d-slicer-software-3d-printer/ (Accessed 22 JUN 2017)

    Google Scholar 

  111. Craft Unique, “Craftware,” https://craftunique.com/craftware (Accessed 22 JUN 2017)

    Google Scholar 

  112. Ultimaker, “Cura Software,” https://ultimaker.com/en/products/cura-software/ (Accessed 22 JUN 2017)

    Google Scholar 

  113. KISSlicer, “Keep It Simple Slicer,” http://kisslicer.com/ (Accessed 22 JUN 2017)

    Google Scholar 

  114. Simplify3D, “Simplify3D 3D Printing Slicing Software,” https://www.simplify3d.com (Accessed 22 JUN 2017)

    Google Scholar 

  115. Slic3r, “G-Code Generator for 3D Printers,” http://slic3r.org/ (Accessed 22 JUN 2017)

    Google Scholar 

  116. SIEMENS, “PLM Software,” https://www.plm.automation.siemens.com (Accessed 22 JUN 2017)

    Google Scholar 

  117. Han, H., Bae, H., Kang, H., Son, J., and Kim, H., “Multi Agent 3D Printer and Robot System for Mass Personalization FAAS Platform,” Proc. of the Information and Communication Technology Convergence, pp. 1129–1131, 2016.

    Google Scholar 

  118. Lin, K.-H., Shen, C.-Y., Du, J.-L., Wang, G.-Y., Chen, H.-M., et al., “A Design of Constant Temperature Control System in 3D Printer,” Proc. of the International Conference on Consumer Electronics-Taiwan, pp. 1–2, 2016.

    Google Scholar 

  119. Yang, W. M., Ge, R. Z., and Meng, P. F., “Wireless Thermal Printer Based on Internet of Things,” Applied Mechanics and Materials, pp. 2021–2024, 2014.

    Google Scholar 

  120. Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M., “Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions,” Future Generation Computer Systems, Vol. 29, No. 7, pp. 1645–1660, 2013.

    Article  Google Scholar 

  121. Miorandi, D., Sicari, S., De Pellegrini, F., and Chlamtac, I., “Internet of Things: Vision, Applications and Research Challenges,” Ad Hoc Networks, Vol. 10, No. 7, pp. 1497–1516, 2012.

    Article  Google Scholar 

  122. Atzori, L., Iera, A., and Morabito, G., “The Internet of Things: A Survey,” Computer Networks, Vol. 54, No. 15, pp. 2787–2805, 2010.

    Article  MATH  Google Scholar 

  123. HP, “HP Printers-Print and Scan from the HP AiO Printer Remote App,” http://support.hp.com/us-en/document/c03561640 (Accessed 22 JUN 2017)

    Google Scholar 

  124. Canon, “Canon Print Service,” http://www.canon.com/psmp/ (Accessed 22 JUN 2017)

    Google Scholar 

  125. SAMSUNG, “Mobile Pringt Control,” http://www.samsung.com/us/mobile-print-app/ (Accessed 22 JUN 2017)

    Google Scholar 

  126. 3D Systems, “Cube Print,” https://prod.cubify.com/support/cube/downloads (Accessed 22 JUN 2017)

    Google Scholar 

  127. WOW 3D Printer Professional, “WOW 3D Printer Apps,” https://wow3dprinter.word press.com/ (Accessed 22 JUN 2017)

    Google Scholar 

  128. Octo Print, “3D Printer Control,” http://octoprint.org/ (Accessed 22 JUN 2017)

    Google Scholar 

  129. Ultimaker, “Ultimaker 3,” https://ultimaker.com/ (Accessed 22 JUN 2017)

    Google Scholar 

  130. Xiaoan, G. and Lina, W., “Networked Control and Monitoring System Based on Industrial Ethernet,” Proc. of the 6th IEEE Conference on Industrial Electronics and Applications, pp. 1337–1341, 2011.

    Google Scholar 

  131. Stănciulescu, S., Berger, T., Walkingshaw, E., and Wąsowski, A., “Concepts, Operations, and Feasibility of a Projection-Based Variation Control System,” Proc. of IEEE International Conference on Software Maintenance and Evolution, pp. 323–333, 2016.

    Google Scholar 

  132. MAdekolu, A. M., Khan, H., and Neelam, M., “Network Monitoring,” Sc. Thesis, School of Information Science, Computer and Electrical Engineering, Halmstad University, 2014.

    Google Scholar 

  133. PaperCut, “PaperCutNG & PaperCutMF,” http://www.papercut.com/ (Accessed 22 JUN 2017)

    Google Scholar 

  134. Print Manager, “Print Manager Plus 9.0, http://www.printmanager.com/ (Accessed 22 JUN 2017)

    Google Scholar 

  135. Fitosoft, “Objectprint,” http://www.fitosoft.com/ (Accessed 22 JUN 2017)

    Google Scholar 

  136. Manage Engine, “Event Log Analyzer,” https://www.manageengine.com/products/eventlog/ (Accessed 22 JUN 2017)

    Google Scholar 

  137. SoftPerfect, “Print Inspector,” https://www.softperfect.com/products/pinspector/ (Accessed 22 JUN 2017)

    Google Scholar 

  138. 4 Office Automation, “Print Monitoring Software Solutions,” http://www.4office.ca/ (Accessed 22 JUN 2017)

    Google Scholar 

  139. Xerox, “A.N.D. Pcounter,” http://www.office.xerox.com/softwaresolutions/a-n-d-pcounter/enus.html (Accessed 22 JUN 2017)

    Google Scholar 

  140. Shane Wall, “HP’s IoT Printing Services,” https://shanewallcto.com/2015/07/28/hp-iot-printing-services/ (Accessed 22 JUN 2017)

    Google Scholar 

  141. Print Monitor, “Cloud Based Printer Monitoring Software,” http://www.printmonitoringonline.com/ (Accessed 22 JUN 2017)

    Google Scholar 

  142. MPS Monitor Cloud, “Remote Printer Monitoring,” http://www.mpsmonitor.com/ (Accessed 22 JUN 2017)

    Google Scholar 

  143. O&K Print Watch, “Print monitor and printing control software,” https://www.prnwatch.com/ (Accessed 22 JUN 2017)

    Google Scholar 

  144. PAESSLER, “PRTG Network Monitor,” https://www.paessler.com/prtg

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Tae Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, S., Song, S.E. & Cho, Y.T. Effective software solutions for 4D printing: A review and proposal. Int. J. of Precis. Eng. and Manuf.-Green Tech. 4, 359–371 (2017). https://doi.org/10.1007/s40684-017-0041-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-017-0041-y

Keywords

Navigation