Skip to main content
Log in

Convective Heat Transfer Coefficient Model Under Nanofluid Minimum Quantity Lubrication Coupled with Cryogenic Air Grinding Ti–6Al–4V

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Under the threat of serious environmental pollution and resource waste, sustainable development and green manufacturing have gradually become a new development trend. A new environmentally sustainable approach, namely, cryogenic air nanofluid minimum quantity lubrication (CNMQL), is proposed considering the unfavorable lubricating characteristic of cryogenic air (CA) and the deficient cooling performance of minimum quantity lubrication (MQL). However, the heat transfer mechanism of vortex tube cold air fraction by CNMQL remains unclear. The cold air fraction of vortex tubes influences the boiling heat transfer state and cooling heat transfer performance of nanofluids during the grinding process. Thus, a convective heat transfer coefficient model was established based on the theory of boiling heat transfer and conduction, and the numerical simulation of finite difference and temperature field in the grinding zone under different vortex tube cold air fractions was conducted. Simulation results demonstrated that the highest temperature initially declines and then rises with increasing cold air fraction. Afterward, this temperature reaches the lowest peak (192.7 °C) when the cold air fraction is 0.35. Experimental verification was conducted with Ti–6Al–4V to verify the convective heat transfer coefficient model. The results concluded that the low specific grinding energy (66.03 J/mm3), high viscosity (267.8 cP), and large contact angle (54.01°) of nanofluids were obtained when the cold air fraction was 0.35. Meanwhile, the lowest temperature of the grinding zone was obtained (183.9 °C). Furthermore, the experimental results were consistent with the theoretical analysis, thereby verifying the reliability of the simulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Sun, S., Brandt, M., & Dargusch, M. S. (2009). Characteristics of cutting forces and chip formation in machining of titanium alloys. International Journal of Machine Tools & Manufacture, 49(7–8), 561–568. https://doi.org/10.1016/j.ijmachtools.2009.02.008.

    Article  Google Scholar 

  2. Sima, M., & Ozel, T. (2010). Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V. International Journal of Machine Tools & Manufacture, 50(11), 943–960. https://doi.org/10.1016/j.ijmachtools.2010.08.004.

    Article  Google Scholar 

  3. Hong, H., Riga, A. T., Gahoon, J. M., & Gahoon, J. M. (1993). Machinability of Steels and Titanium Alloys Under Lubrication. Wear, 162–164, 34–39.

    Article  Google Scholar 

  4. Setti, D., Sinha, M. K., Ghosh, S., & Rao, P. V. (2015). Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids. International Journal of Machine Tools & Manufacture, 88, 237–248. https://doi.org/10.1016/j.ijmachtools.2014.10.005.

    Article  Google Scholar 

  5. Xu, X. P., & Malkin, S. (2001). Comparison of methods to measure grinding temperatures. Journal of Manufacturing Science and Engineering, 123(2), 191–195. https://doi.org/10.1115/1.1369358兴.

    Article  Google Scholar 

  6. Mao, C., Liang, C., Zhang, Y., Zhang, M., Hu, Y., & Bi, Z. (2017). Grinding characteristics of cBN-WC-10Co composites. Ceramics International, 43(18), 16539–16547. https://doi.org/10.1016/j.ceramint.2017.09.040.

    Article  Google Scholar 

  7. Mao, C., Sun, X., Huang, H., Kang, C., Zhang, M., & Wu, Y. (2016). Characteristics and removal mechanism in laser cutting of cBN–WC–10Co composites. Journal of Materials Processing Technology, 230, 42–49. https://doi.org/10.1016/j.jmatprotec.2015.11.014.

    Article  Google Scholar 

  8. Gao, T., Zhang, X. P., Li, C. H., Zhang, Y. B., Yang, M., Jia, D. Z., et al. (2020). Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding. [Article]. Journal of Manufacturing Processes, 51, 44–61. https://doi.org/10.1016/j.jmapro.2020.01.024.

    Article  Google Scholar 

  9. Guerrini, G., Landi, E., Peiffer, K., & Fortunato, A. (2018). Dry grinding of gears for sustainable automotive transmission production. Journal of Cleaner Production, 176, 76–88. https://doi.org/10.1016/j.clepro.2017.12.127.

    Article  Google Scholar 

  10. Duan, Z., Li, C., Zhang, Y., Dong, L., Bai, X., Yang, M., et al. (2020). Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication. Chinese Journal of Aeronautics. https://doi.org/10.1016/j.cja.2020.04.029.

    Article  Google Scholar 

  11. Li, H. N., Wang, J. P., Wu, C. Q., Zhao, Y. J., Xu, J., Liu, X., et al. (2020). Damage behaviors of unidirectional CFRP in orthogonal cutting: A comparison between single- and multiple-pass strategies. Composites Part B-Engineering. https://doi.org/10.1016/j.compositesb.2020.107774.

    Article  Google Scholar 

  12. Ebbrell, S., Woolley, N. H., & Tridimas, Y. D. (2000). The effects of cutting fluid application methods on the grinding process. International Journal of Machine Tools & Manufacture, 40(2), 209–223.

    Article  Google Scholar 

  13. Mao, C., Zhou, X., Yin, L., Zhang, M., Tang, K., & Zhang, J. (2015). Investigation of the flow field for a double-outlet nozzle during minimum quantity lubrication grinding. The International Journal of Advanced Manufacturing Technology, 85(1–4), 291–298. https://doi.org/10.1007/s00170-015-7896-2.

    Article  Google Scholar 

  14. Gao, T., Li, C., Zhang, Y., Yang, M., Jia, D., Jin, T., et al. (2019). Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribology International, 131, 51–63. https://doi.org/10.1016/j.triboint.2018.10.025.

    Article  Google Scholar 

  15. Jia, D., Li, C., Zhang, Y., Yang, M., Zhang, X., Li, R., et al. (2018). Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration. The International Journal of Advanced Manufacturing Technology, 100(1–4), 457–473. https://doi.org/10.1007/s00170-018-2718-y.

    Article  Google Scholar 

  16. Wang, Y., Li, C., Zhang, Y., Li, B., Yang, M., Zhang, X., et al. (2016). Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribology International, 99, 198–210. https://doi.org/10.1016/j.triboint.2016.03.023.

    Article  Google Scholar 

  17. Nam, J., & Lee, S. W. (2018). Machinability of Titanium Alloy (Ti-6Al-4V) in Environmentally-Friendly Micro-Drilling Process with Nanofluid Minimum Quantity Lubrication Using Nanodiamond Particles. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 29–35. https://doi.org/10.1007/s40684-018-0003-z.

    Article  Google Scholar 

  18. Pervaiz, S., Anwar, S., Qureshi, I., & Ahmed, N. (2019). Recent Advances in the Machining of Titanium Alloys using Minimum Quantity Lubrication (MQL) Based Techniques. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 133–145. https://doi.org/10.1007/s40684-019-00033-4.

    Article  Google Scholar 

  19. Li, B. K., Li, C. H., Zhang, Y. B., Wang, Y. G., Jia, D. Z., Yang, M., et al. (2017). Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. Journal of Cleaner Production, 154, 1–11. https://doi.org/10.1016/j.jclepro.2017.03.213.

    Article  Google Scholar 

  20. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., et al. (2019). Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. The International Journal of Advanced Manufacturing Technology, 102(5–8), 2617–2632. https://doi.org/10.1007/s00170-019-03367-0.

    Article  Google Scholar 

  21. Hewson, W. D., & Gerow, G. K. (1999). High performance metal working oil (Vol. 5958849, pp. 9–28.). US.

  22. Babar, H., & Ali, H. M. (2019). Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. Journal of Molecular Liquids, 281, 598–633. https://doi.org/10.1016/j.molliq.2019.02.102.

    Article  Google Scholar 

  23. Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y., et al. (2017). Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. International Journal of Machine Tools and Manufacture, 122, 55–65. https://doi.org/10.1016/j.ijmachtools.2017.06.003.

    Article  Google Scholar 

  24. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., et al. (2019). Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceramics International, 45(12), 14908–14920. https://doi.org/10.1016/j.ceramint.2019.04.226.

    Article  Google Scholar 

  25. Guo, S. M., Li, C. H., Zhang, Y. B., Wang, Y. G., Li, B. K., Yang, M., et al. (2017). Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. Journal of Cleaner Production, 140, 1060–1076. https://doi.org/10.1016/j.jclepro.2016.10.073.

    Article  Google Scholar 

  26. Yang, M., Li, C., Zhang, Y., Wang, Y., Li, B., Jia, D., et al. (2017). Research on microscale skull grinding temperature field under different cooling conditions. Applied Thermal Engineering, 126, 525–537. https://doi.org/10.1016/j.applthermaleng.2017.07.183.

    Article  Google Scholar 

  27. Hemmat Esfe, M., & Saedodin, S. (2014). An experimental investigation and new correlation of viscosity of ZnO-EG nanofluid at various temperatures and different solid volume fractions. Experimental Thermal and Fluid Science, 55, 1–5. https://doi.org/10.1016/j.expthermflusci.2014.02.011.

    Article  Google Scholar 

  28. Hemmat Esfe, M., Afrand, M., Rostamian, S. H., & Toghraie, D. (2017). Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Experimental Thermal and Fluid Science, 80, 384–390. https://doi.org/10.1016/j.expthermflusci.2016.07.011.

    Article  Google Scholar 

  29. Ali, H. M., Ali, H., Liaquat, H., Bin Maqsood, H. T., & Nadir, M. A. (2015). Experimental investigation of convective heat transfer augmentation for car radiator using ZnO-water nanofluids. Energy, 84, 317–324. https://doi.org/10.1016/j.energy.2015.02.103.

    Article  Google Scholar 

  30. Pandey, S. D., & Nema, V. K. (2012). Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Experimental Thermal and Fluid Science, 38, 248–256. https://doi.org/10.1016/j.expthermflusci.2011.12.013.

    Article  Google Scholar 

  31. Ali, H. M., & Arshad, W. (2017). Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids. International Journal of Heat and Mass Transfer, 106, 465–472. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.061.

    Article  Google Scholar 

  32. Halelfadl, S., Maré, T., & Estellé, P. (2014). Efficiency of carbon nanotubes water based nanofluids as coolants. Experimental Thermal and Fluid Science, 53, 104–110. https://doi.org/10.1016/j.expthermflusci.2013.11.010.

    Article  Google Scholar 

  33. Zamzamian, A., Oskouie, S. N., Doosthoseini, A., Joneidi, A., & Pazouki, M. (2011). Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Experimental Thermal and Fluid Science, 35(3), 495–502. https://doi.org/10.1016/j.expthermflusci.2010.11.013.

    Article  Google Scholar 

  34. Madhesh, D., Parameshwaran, R., & Kalaiselvam, S. (2014). Experimental investigation on convective heat transfer and rheological characteristics of Cu-TiO2 hybrid nanofluids. Experimental Thermal and Fluid Science, 52, 104–115. https://doi.org/10.1016/j.expthermflusci.2013.08.026.

    Article  Google Scholar 

  35. Zarringhalam, M., Karimipour, A., & Toghraie, D. (2016). Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–Water nanofluid. Experimental Thermal and Fluid Science, 76, 342–351. https://doi.org/10.1016/j.expthermflusci.2016.03.026.

    Article  Google Scholar 

  36. Padgurskas, J., Rukuiza, R., Prosycevas, I., & Kreivaitis, R. (2013). Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribology International, 60, 224–232. https://doi.org/10.1016/j.triboint.2012.10.024.

    Article  Google Scholar 

  37. Hwang, Y., Park, H. S., Lee, J. K., & Jung, W. H. (2006). Thermal conductivity and lubrication characteristics of nanofluids. Current Applied Physics, 6, e67–e71. https://doi.org/10.1016/j.cap.2006.01.014.

    Article  Google Scholar 

  38. Zhang, Y. B., Li, C. H., Ji, H. J., Yang, X. H., Yang, M., Jia, D. Z., et al. (2017). Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. International Journal of Machine Tools & Manufacture, 122, 67–83. https://doi.org/10.1016/j.ijmachtools.2017.06.002.

    Article  Google Scholar 

  39. Hegab, H., & Kishawy, H. (2018). Towards sustainable machining of Inconel 718 using nano-fluid minimum quantity lubrication. Journal of Manufacturing and Materials Processing. https://doi.org/10.3390/jmmp2030050.

    Article  Google Scholar 

  40. Setti, D., Ghosh, S., & Rao, P. V. (2012). Application of Nano Cutting Fluid under Minimum Quantity Lubrication (MQL) Technique to Improve Grinding of Ti-6Al-4V Alloy. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 6(10), 493–497.

    Google Scholar 

  41. Setti, D., Sinha, M. K., Sudarsan, G., & Rao, P. V. (2014). An investigation into the application of Al2O3 nanofluid–based minimum quantity lubrication technique for grinding of Ti–6Al–4V. International Journal of Precision Technology, 4(3–4), 268–279.

    Article  Google Scholar 

  42. Luo, T., Wei, X. W., Huang, X., Huang, L., & Yang, F. (2014). Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceramics International, 40(5), 7143–7149. https://doi.org/10.1016/j.ceramint.2013.12.050.

    Article  Google Scholar 

  43. Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B., Dong, L., et al. (2018). Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 327–339. https://doi.org/10.1007/s40684-018-0035-4.

    Article  Google Scholar 

  44. Zhang, Y., Li, C., Jia, D., Zhang, D., & Zhang, X. (2015). Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. Journal of Cleaner Production, 87, 930–940. https://doi.org/10.1016/j.jclepro.2014.10.027.

    Article  Google Scholar 

  45. Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2016). Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. Journal of Cleaner Production, 127, 1–18. https://doi.org/10.1016/j.jclepro.2016.03.146.

    Article  Google Scholar 

  46. Lee, P. H., Nam, J. S., Li, C., & Lee, S. W. (2012). An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing, 13(3), 331–338. https://doi.org/10.1007/s12541-012-0042-2.

    Article  Google Scholar 

  47. M'Saoubi, R., Axinte, D., Soo, S. L., Nobel, C., Attia, H., Kappmeyer, G., et al. (2015). High performance cutting of advanced aerospace alloys and composite materials. Cirp Annals-Manufacturing Technology, 64(2), 557–580. https://doi.org/10.1016/j.cirp.2015.05.002.

    Article  Google Scholar 

  48. Debnath, S., Reddy, M. M., & Yi, Q. S. (2014). Environmental friendly cutting fluids and cooling techniques in machining: A review. Journal of Cleaner Production, 83, 33–47. https://doi.org/10.1016/j.jclepro.2014.07.071.

    Article  Google Scholar 

  49. Pusavec, F., Krajnik, P., & Kopac, J. (2010). Transitioning to sustainable production—Part I: Application on machining technologies. Journal of Cleaner Production, 18(2), 174–184. https://doi.org/10.1016/j.jclepro.2009.08.010.

    Article  Google Scholar 

  50. Sharma, V. S., Dogra, M., & Suri, N. M. (2009). Cooling techniques for improved productivity in turning. International Journal of Machine Tools & Manufacture, 49(6), 435–453. https://doi.org/10.1016/j.ijmachtools.2008.12.010.

    Article  Google Scholar 

  51. Ghosh, C. S., & Rao, P. V. (2015). Application of sustainable techniques in metal cutting for enhanced machinability: A review. Journal of Cleaner Production, 100, 17–34. https://doi.org/10.1016/j.jclepro.2015.03.039.

    Article  Google Scholar 

  52. Paul, S., & Chattopadhyay, A. B. (1995). Effects of cryogenic cooling by liquid nitrogen jet on forces, temperature and surface residual stresses in grinding steels. Cryogenics, 35(8), 515–523.

    Article  Google Scholar 

  53. Im, S. Y., & Yu, S. S. (2012). Effects of geometric parameters on the separated air flow temperature of a vortex tube for design optimization. Energy, 37(1), 154–160. https://doi.org/10.1016/j.energy.2011.09.008.

    Article  Google Scholar 

  54. Mohammadi, S., & Farhadi, F. (2013). Experimental analysis of a Ranque-Hilsch vortex tube for optimizing nozzle numbers and diameter. Applied Thermal Engineering, 61(2), 500–506. https://doi.org/10.1016/j.applthermaleng.2013.07.043.

    Article  Google Scholar 

  55. Halim, N. H. A., Haron, C. H. C., Ghani, J. A., & Azhar, M. F. (2019). Tool wear and chip morphology in high-speed milling of hardened Inconel 718 under dry and cryogenic CO2 conditions. Wear, 426, 1683–1690. https://doi.org/10.1016/j.wear.2019.01.095.

    Article  Google Scholar 

  56. Giasin, K., Ayvar-Soberanis, S., & Hodzic, A. (2016). Evaluation of cryogenic cooling and minimum quantity lubrication effects on machining GLARE laminates using design of experiments. Journal of Cleaner Production, 135, 533–548. https://doi.org/10.1016/j.jclepro.2016.06.098.

    Article  Google Scholar 

  57. Schoop, J., Effgen, M., Balk, T. J., & Jawahir, I. S. (2013). The effects of depth of cut and pre-cooling on surface porosity in cryogenic machining of porous tungsten. Procedia CIRP, 8, 357–362. https://doi.org/10.1016/j.procir.2013.06.116.

    Article  Google Scholar 

  58. Zhang, X. H., Xia, C., Chen, P., & Yin, G. F. (2012). comparative experimental research on cryogenic gear hobbing with MQL. Advanced Materials Research, 479–481, 2259–2264. https://doi.org/10.4028/www.scientific.net/AMR.479-481.2259.

    Article  Google Scholar 

  59. Su, Y., He, N., & Li, L. (2010). Cooling and lubricating performance of cryogenic minimum quantity lubrication method in high speed turning. Lubricating Oil, 35(9), 52–55. https://doi.org/10.3969/j.issn.0254-0150.2010.09.012.

    Article  Google Scholar 

  60. Zhang, S., Li, J. F., & Wang, Y. W. (2012). Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. Journal of Cleaner Production, 32, 81–87. https://doi.org/10.1016/j.jclepro.2012.03.014.

    Article  Google Scholar 

  61. Jamil, M., Khan, A. M., Hegab, H., Gong, L., Mia, M., Gupta, M. K., et al. (2019). Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 102(9–12), 3895–3909. https://doi.org/10.1007/s00170-019-03485-9.

    Article  Google Scholar 

  62. Zhang, J. C., Li, C. H., Zhang, Y. B., Yang, M., Jia, D. Z., Hou, Y. L., et al. (2018). Temperature field model and experimental verification on cryogenic air nanofluid minimum quantity lubrication grinding. International Journal of Advanced Manufacturing Technology, 97(1–4), 209–228. https://doi.org/10.1007/s00170-018-1936-7.

    Article  Google Scholar 

  63. Zhang, J. C., Li, C. H., Zhang, Y. B., Yang, M., Jia, D. Z., Liu, G. T., et al. (2018). Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. Journal of Cleaner Production, 193, 236–248. https://doi.org/10.1016/j.jclepro.2018.05.009.

    Article  Google Scholar 

  64. Mao, C., Zou, H. F., Huang, Y., Li, Y. F., & Zhou, Z. X. (2013). Analysis of heat transfer coefficient on workpiece surface during minimum quantity lubricant grinding. International Journal of Advanced Manufacturing Technology, 66(1–4), 363–370. https://doi.org/10.1007/s00170-012-4330-x.

    Article  Google Scholar 

  65. Zhang, Z. Y., Shang, W., Ding, H. H., Guo, J., Wang, H. Y., Liu, Q. Y., et al. (2016). Thermal model and temperature field in rail grinding process based on a moving heat source. Applied Thermal Engineering, 106, 855–864.

    Article  Google Scholar 

  66. Shen, B., Shih, A. J., & Xiao, G. (2011). A Heat Transfer Model Based on Finite Difference Method for Grinding. Journal of Manufacturing Science & Engineering, 133(3), 031001.

    Article  Google Scholar 

  67. Li, B. M., & Zhao, B. (2003). Modern grinding technology. Beijing: China Machine Press.

    Google Scholar 

  68. Zhao, Y. X. (1994). Experimental and theoretical research on the mechanism of boiling heat transfer in cold flow nuclear state. Shanghai: Shanghai Polytechnic University.

    Google Scholar 

  69. Mao, C., Tang, X. J., Zou, H. F., Zhou, Z. X., & Yin, W. W. (2012). Experimental investigation of surface quality for minimum quantity oil-water lubrication grinding. International Journal of Advanced Manufacturing Technology, 59(1–4), 93–100. https://doi.org/10.1007/s00170-011-3491-3.

    Article  Google Scholar 

  70. Lin, Z. H. (2009). Gas–liquid two–phase flow and boiling heat transfer. Shanghai: Xian Jiaotong University Press.

    Google Scholar 

  71. Lu, Z. Q. (2002). Two–phase flow and boiling heat transfer. Beijing: Tsinghua University Press.

    Google Scholar 

  72. XIn, M. D. (1987). Boiling heat transfer and its reinforcement. Chongqinq: Chongqing University Press.

    Google Scholar 

  73. Maruda, R. W., Krolczyk, G. M., Feldshtein, E., Pusavec, F., Szydlowski, M., Legutko, S., et al. (2016). A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). International Journal of Machine Tools & Manufacture, 100, 81–92. https://doi.org/10.1016/j.ijmachtools.2015.10.008.

    Article  Google Scholar 

  74. Yang, M., Li, C. H., Zhang, Y. B., Wang, Y. G., Li, B. K., & Li, R. Z. (2018). Theoretical Analysis and Experimental Research on Temperature Field of Microscale Bone Grinding under Nanoparticle Jet Mist Cooling. Journal of Mechanical Engineering, 54(18), 194–203.

    Article  Google Scholar 

  75. Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B., Jia, D., et al. (2016). Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. Journal of Cleaner Production, 127, 487–499. https://doi.org/10.1016/j.jclepro.2016.03.121.

    Article  Google Scholar 

  76. Hung, Y. H., Teng, T. P., Teng, T. C., & Chen, J. H. (2012). Assessment of heat dissipation performance for nanofluid. Applied Thermal Engineering, 32, 132–140. https://doi.org/10.1016/j.applthermaleng.2011.09.008.

    Article  Google Scholar 

  77. Hasan, M. I. (2014). Investigation of flow and heat transfer characteristics in micro pin fin heat sink with nanofluid. Applied Thermal Engineering, 63(2), 598–607. https://doi.org/10.1016/j.applthermaleng.2013.11.059.

    Article  Google Scholar 

  78. Demas, N. G., Timofeeva, E. V., Routbort, J. L., & Fenske, G. R. (2012). Tribological Effects of BN and MoS2 Nanoparticles Added to Polyalphaolefin Oil in Piston Skirt/Cylinder Liner Tests. Tribology Letters, 47(1), 91–102. https://doi.org/10.1007/s11249-012-9965-0.

    Article  Google Scholar 

  79. Su, Y., Gong, L., Li, B., Liu, Z. Q., & Chen, D. D. (2016). Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. International Journal of Advanced Manufacturing Technology, 83(9–12), 2083–2089. https://doi.org/10.1007/s00170-015-7730-x.

    Article  Google Scholar 

  80. Wang, Y. G., Li, C. H., Zhang, Y. B., Yang, M., Zhang, X. P., Zhang, N. Q., et al. (2017). Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubrication grinding with different concentrations of Al2O3 nanofluids. Journal of Cleaner Production, 142, 3571–3583. https://doi.org/10.1016/j.jclepro.2016.10.110.

    Article  Google Scholar 

  81. Huang, S. B. (2014). Heat Transfer. Dongying: Petroleum University Press.

    Google Scholar 

  82. Wang, K. Q. (2006). Measurement of viscosity of lubricant used in SD1110 diesel engines (Vol. 1).

  83. Zhang, J. J., & Yang, P. R. (2007). The Influence of Oil Ambient Viscosity on Non-steady-state Thermal Elastohydrodynamic Lubrication. Lubricating Oil, 32(2), 78–80. https://doi.org/10.3969/j.issn.0254-0150.2007.02.024. (84).

    Article  Google Scholar 

  84. Zhao, Z. N. (2008). Heat transfer (2nd ed.). Beijing: Higher Education Press.

    Google Scholar 

  85. Deb, S., & Yao, S. C. (1989). Analysis on film boiling heat transfer of impacting sprays. International Journal of Heat and Mass Transfer, 32, 2099–2112.

    Article  Google Scholar 

  86. Bang, I. C., & Soon, H. C. (2005). Boiling heat transfer performance and phenomena of Al2O3-water nanofluids form a plain surface in a pool. International Journal of Heat and Mass Transfer, 48(12), 2407–2419.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the following organizations: the National Natural Science Foundation of China (51975305 and 51905289), the Major Research Project of Shandong Province (2018GGX103044, 2019GGX104040 and 2019GSF108236), and the Shandong Provincial Natural Science Foundation of China (ZR2019PEE008), Major Science and technology innovation engineering projects of Shandong Province (2019JZZY020111), Applied basic research Youth Project of Qingdao science and technology plan (19-6-2-63-cg).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhe Li or Hafiz Muhammad Ali.

Ethics declarations

Conflict of Interests

The authors confirm that no conflict of interest exists in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wu, W., Li, C. et al. Convective Heat Transfer Coefficient Model Under Nanofluid Minimum Quantity Lubrication Coupled with Cryogenic Air Grinding Ti–6Al–4V. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1113–1135 (2021). https://doi.org/10.1007/s40684-020-00268-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00268-6

Keywords

Navigation