Skip to main content
Erschienen in: Journal of Computers in Education 4/2016

01.12.2016

A framework of curriculum design for computational thinking development in K-12 education

verfasst von: Siu-Cheung Kong

Erschienen in: Journal of Computers in Education | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To respond to the growing integration of digital technologies across all sectors of society, a curriculum should be developed to nurture the next generation as creative problem solvers in order to see the world through a computational lens. One way to achieve this goal is to design a curriculum in K-12 to promote computational thinking (CT) through programming. In order to facilitate the design of the CT curriculum, the expected learning outcomes of the curriculum are proposed in this study. The CT learning outcomes of this study compose of CT knowledge, practices, and perspectives. Based on the proposed CT learning outcomes and interest-driven creator theory, this article aims to propose a seven-principle framework for guiding the design of K-12 CT curriculum. The first three principles ensure CT skills and perspectives are delivered in the curriculum through a programming environment that fosters CT knowledge acquisition. The other four principles are the design strategies for CT development: provide incrementally complex computational tasks across all levels of the curriculum to develop CT skills; review each level of the curriculum by producing final project samples to ensure a comprehensive coverage of CT knowledge; design the computational tasks that are of interest to the target learners to nurture interest-driven creator; and establish appropriate assessment criteria for the final projects and showcase their productions to enhance learners’ creativity. The future work is to design, implement, and evaluate CT curriculum underpinned by these seven principles in K-12.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832–835.CrossRef Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832–835.CrossRef
Zurück zum Zitat Akkoyunlu, B., Yilmaz Soylu, M., & Çağlar, M. (2010). A study on developing “digital empowerment scale” for university learners. Hacettepe University Journal of Education, 39(39), 10–19. Akkoyunlu, B., Yilmaz Soylu, M., & Çağlar, M. (2010). A study on developing “digital empowerment scale” for university learners. Hacettepe University Journal of Education, 39(39), 10–19.
Zurück zum Zitat Anderson, L. W., & Krathwohl, D. R. (2000). A taxonomy for learning, teaching, and assessing—A revision of Bloom’s taxonomy of educational objectives. New York: Longman. Anderson, L. W., & Krathwohl, D. R. (2000). A taxonomy for learning, teaching, and assessing—A revision of Bloom’s taxonomy of educational objectives. New York: Longman.
Zurück zum Zitat Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. ISTE Learning and Leading, 38(6), 20–22. Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. ISTE Learning and Leading, 38(6), 20–22.
Zurück zum Zitat Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54.CrossRef Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54.CrossRef
Zurück zum Zitat Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In A. F. Ball & C. A. Tyson (Eds.), Proceedings of the 2012 annual meeting of the American educational research association (pp. 1–25). Vancouver: American Educational Research Association. Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In A. F. Ball & C. A. Tyson (Eds.), Proceedings of the 2012 annual meeting of the American educational research association (pp. 1–25). Vancouver: American Educational Research Association.
Zurück zum Zitat Chan, T. W., Looi, C. K., & Chang, B. (2015). The IDC theory: Creation and the creation loop. In T. Kojiri, T. Supnithi, Y. Wang, Y.-T. Wu, H. Ogata, W. Chen, S. C. Kong, & F. Qiu (Eds.), Workshop proceedings of the 23rd international conference on computers in education (pp. 814–820). Hangzhou: Asia-Pacific Society for Computers in Education. Chan, T. W., Looi, C. K., & Chang, B. (2015). The IDC theory: Creation and the creation loop. In T. Kojiri, T. Supnithi, Y. Wang, Y.-T. Wu, H. Ogata, W. Chen, S. C. Kong, & F. Qiu (Eds.), Workshop proceedings of the 23rd international conference on computers in education (pp. 814–820). Hangzhou: Asia-Pacific Society for Computers in Education.
Zurück zum Zitat Chen, W., Chan, T. W., Liao, C. C. Y., Cheng, H. N. H., So, H., & Gu, X. (2015). The IDC theory: Habit and the habit loop. In T. Kojiri, T. Supnithi, Y. Wang, Y.-T. Wu, H. Ogata, W. Chen, S. C. Kong, & F. Qiu (Eds.), Workshop proceedings of the 23rd international conference on computers in education (pp. 821–828). Hangzhou: Asia-Pacific Society for Computers in Education. Chen, W., Chan, T. W., Liao, C. C. Y., Cheng, H. N. H., So, H., & Gu, X. (2015). The IDC theory: Habit and the habit loop. In T. Kojiri, T. Supnithi, Y. Wang, Y.-T. Wu, H. Ogata, W. Chen, S. C. Kong, & F. Qiu (Eds.), Workshop proceedings of the 23rd international conference on computers in education (pp. 821–828). Hangzhou: Asia-Pacific Society for Computers in Education.
Zurück zum Zitat Clark, R. C., & Mayer, R. E. (2007). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning. San Francisco: Pfeiffer. Clark, R. C., & Mayer, R. E. (2007). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning. San Francisco: Pfeiffer.
Zurück zum Zitat Csikszentmihalyi, M., & Rathunde, K. (1993). The measurement of flow in everyday life: Toward a theory of emergent motivation. Nebraska Symposium on Motivation, 40, 57–97. Csikszentmihalyi, M., & Rathunde, K. (1993). The measurement of flow in everyday life: Toward a theory of emergent motivation. Nebraska Symposium on Motivation, 40, 57–97.
Zurück zum Zitat Davis, E. A. (2003). Prompting middle school science students for productive reflection: Generic and directed prompts. Journal of the Learning Sciences, 12(1), 91–142.CrossRef Davis, E. A. (2003). Prompting middle school science students for productive reflection: Generic and directed prompts. Journal of the Learning Sciences, 12(1), 91–142.CrossRef
Zurück zum Zitat Frymier, A., Shulman, G., & Houser, M. (1996). The development of a learner empowerment measure. Communication Education, 45(3), 181–199.CrossRef Frymier, A., Shulman, G., & Houser, M. (1996). The development of a learner empowerment measure. Communication Education, 45(3), 181–199.CrossRef
Zurück zum Zitat Futschek, G. (2006). Algorithmic thinking: The key for understanding computer science. Lecture Notes in Computer Science, 4226, 159–168.CrossRef Futschek, G. (2006). Algorithmic thinking: The key for understanding computer science. Lecture Notes in Computer Science, 4226, 159–168.CrossRef
Zurück zum Zitat Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational Researcher, 42(1), 38–43.CrossRef Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational Researcher, 42(1), 38–43.CrossRef
Zurück zum Zitat Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. New York: Routledge. Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. New York: Routledge.
Zurück zum Zitat Krems, J. F. (1995). Cognitive flexibility and complex problem solving. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 201–218). Hillsdale: Lawrence Erlbaum Associates. Krems, J. F. (1995). Cognitive flexibility and complex problem solving. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 201–218). Hillsdale: Lawrence Erlbaum Associates.
Zurück zum Zitat Looi, C. K., Chan, T.-W., Wu, L., & Chang, B. (2015). In T. Kojiri, T. Supnithi, Y. Wang, Y.-T. Wu, H. Ogata, W. Chen, S. C. Kong, & F. Qiu (Eds.), Workshop proceedings of the 23rd international conference on computers in education. Hangzhou: Asia-Pacific Society for Computers in Education. Looi, C. K., Chan, T.-W., Wu, L., & Chang, B. (2015). In T. Kojiri, T. Supnithi, Y. Wang, Y.-T. Wu, H. Ogata, W. Chen, S. C. Kong, & F. Qiu (Eds.), Workshop proceedings of the 23rd international conference on computers in education. Hangzhou: Asia-Pacific Society for Computers in Education.
Zurück zum Zitat Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.CrossRef Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.CrossRef
Zurück zum Zitat Makinen, M. (2006). Digital empowerment as a process for enhancing citizens’ participation. E-Learning, 3(3), 381–395.CrossRef Makinen, M. (2006). Digital empowerment as a process for enhancing citizens’ participation. E-Learning, 3(3), 381–395.CrossRef
Zurück zum Zitat Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Communications of the ACM, 15(12), 1053–1058.CrossRef Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Communications of the ACM, 15(12), 1053–1058.CrossRef
Zurück zum Zitat Resnick, M., Maloney, J., Monroy-Hernandez, A., Eastmond, E., Brennan, K., Millner, A., et al. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.CrossRef Resnick, M., Maloney, J., Monroy-Hernandez, A., Eastmond, E., Brennan, K., Millner, A., et al. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.CrossRef
Zurück zum Zitat Schiefele, U. (1991). Interest, learning, and motivation. Educational Psychologist, 26(3&4), 299–323.CrossRef Schiefele, U. (1991). Interest, learning, and motivation. Educational Psychologist, 26(3&4), 299–323.CrossRef
Zurück zum Zitat Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking of primary grade students. In B. Simon, A. Clear, & Q. Cutts (Eds.), Proceedings of the ninth annual international ACM conference on international computing education research (pp. 59–66). La Jolla: Association for Computing Machinery. Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking of primary grade students. In B. Simon, A. Clear, & Q. Cutts (Eds.), Proceedings of the ninth annual international ACM conference on international computing education research (pp. 59–66). La Jolla: Association for Computing Machinery.
Zurück zum Zitat Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. In J. Carter, I. Utting, & A. Clear (Eds.), Proceedings of 18th annual conference on innovation and technology in computer science education (p. 6). Canterbury: University of Southampton. Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. In J. Carter, I. Utting, & A. Clear (Eds.), Proceedings of 18th annual conference on innovation and technology in computer science education (p. 6). Canterbury: University of Southampton.
Zurück zum Zitat Spady, W. (1994). Outcome-based education: Critical issues and answers. Arlington: American Association of School Administrators. Spady, W. (1994). Outcome-based education: Critical issues and answers. Arlington: American Association of School Administrators.
Zurück zum Zitat Spady, W., & Marshall, K. (1991). Beyond traditional outcome-based education. Educational Leadership, 49(2), 67–72. Spady, W., & Marshall, K. (1991). Beyond traditional outcome-based education. Educational Leadership, 49(2), 67–72.
Zurück zum Zitat Wang, H.-Y., Huang, I., & Hwang, G.-J. (2016). Comparison of the effects of project-based computer programming activities between mathematics-gifted students and average students. Journal of Computers in Education, 3(1), 33–45.CrossRef Wang, H.-Y., Huang, I., & Hwang, G.-J. (2016). Comparison of the effects of project-based computer programming activities between mathematics-gifted students and average students. Journal of Computers in Education, 3(1), 33–45.CrossRef
Zurück zum Zitat Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.CrossRef Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.CrossRef
Zurück zum Zitat Wong, L. H., Chan, T. W., Chen, Z. H., King, R. B., & Wong, S. L. (2015). The IDC theory: Interest and the interest loop. In T. Kojiri, T. Supnithi, Y. Wang, Y.-T. Wu, H. Ogata, W. Chen, S. C. Kong, & F. Qiu (Eds.), Workshop proceedings of the 23rd international conference on computers in education (pp. 804–813). Hangzhou: Asia-Pacific Society for Computers in Education. Wong, L. H., Chan, T. W., Chen, Z. H., King, R. B., & Wong, S. L. (2015). The IDC theory: Interest and the interest loop. In T. Kojiri, T. Supnithi, Y. Wang, Y.-T. Wu, H. Ogata, W. Chen, S. C. Kong, & F. Qiu (Eds.), Workshop proceedings of the 23rd international conference on computers in education (pp. 804–813). Hangzhou: Asia-Pacific Society for Computers in Education.
Metadaten
Titel
A framework of curriculum design for computational thinking development in K-12 education
verfasst von
Siu-Cheung Kong
Publikationsdatum
01.12.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Computers in Education / Ausgabe 4/2016
Print ISSN: 2197-9987
Elektronische ISSN: 2197-9995
DOI
https://doi.org/10.1007/s40692-016-0076-z

Weitere Artikel der Ausgabe 4/2016

Journal of Computers in Education 4/2016 Zur Ausgabe