Skip to main content

Advertisement

Log in

Hydrologic Simulation for Water Balance Improvement in an Outcrop Area of the Guarani Aquifer System

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

The Guarani Aquifer System (GAS) is the largest transboundary aquifer system in South America. One great challenge of managing the GAS is determining the effect of its exploitation for urban, industrial and agricultural use. The fully distributed, process-oriented hydrological model J2000 implemented in the Jena Adaptable Modelling System (JAMS) was used in this study to simulate the water balance in the Ribeirão da Onça (Onça Creek) watershed, because this is an outcrop zone of the Guarani Aquifer System (GAS). The J2000 model proved to be a flexible and easy-to-use tool. The constructed model was effective in predicting the hydrological response of the basin, showing a Nash-Sutcliffe coefficient of 0.76 and 0.81 during periods of model calibration and validation, respectively. The model adequately predicted the discharge volume, presenting percent biases of −0.66 and −2.80 % and root mean square error of 0.14 and 0.18 m3 s−1 for the two periods. The historical reconstruction of the flow series demonstrated that baseflow represents 86–98 % of the total annual discharge and 24–30 % of the total rainfall volume in the Ribeirão da Onça watershed. These estimates can be used to estimate the groundwater recharge rate, in order to establish quantitative targets to prevent overexploitation in the GAS water management. Additionally, the model can be used for further studies to determine the effects of land use and climate change on the hydrologic cycle of the basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajami NK, Gupta H, Wagener T, Sorooshian S (2004) Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. J Hydrol 298:112–135. doi:10.1016/s0022169404002410

    Article  Google Scholar 

  • Ajami H, McCabe MF, Evans JP, Stisen S (2014) Assessing the impact of model spin‐up on surface water‐groundwater interactions using an integrated hydrologic model. Water Resour Res 50(3):2636–2656. doi:10.1002/2013WR014258

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and drainage Paper 56, Rome

    Google Scholar 

  • Arantes EJ, Chaudhry FH, Marcussi FF (2003) Caracterização da interação entre rio e aqüífero com o uso de infiltrômetros (Characterization of the interaction between river and aquifer using infiltrometers). Águas Subterrâneas 20:97–108

    Google Scholar 

  • Arnold JG, Allen PM, Muttiah R, Bernhardt G (1995) Automated base flow separation and recession analysis techniques. Groundwater 33:1010–1018. doi:10.1111/j.1745-6584.1995.tb00046.x

    Article  Google Scholar 

  • Ascough JC II, David O, Krause P, Heathman GC, Kralisch S, Larose M, Ahuja LR, Kipka H (2012) Development and application of a modular watershed-scale hydrologic model using the object modeling system: runoff response evaluation. Trans Am Soc Agric Biol Eng 55(1):117–135. doi:10.13031/2013.41260

    Google Scholar 

  • Barreto CEAG, Wendland E, Marcuzzo FFN (2009) Estimativa da evapotranspiração a partir de variação de nível estático de aquífero (Estimation of evapotranspiration from variation of aquifer static level). Eng Agric 29:52–61. doi:10.1590/S0100-69162009000100006

    Google Scholar 

  • Bende-Michl U, Kemnitz D, Helmschrot J, Krause P, Cresswell H, Kralisch S, Flügel WA (2007) Supporting natural resources management in Tasmania through spatially distributed solute modelling with JAMS/J2000-S. In: Oxley, L. and Kulasiri, D (eds) MODSIM 2007 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2007, pp 2354–2360. ISBN : 978-0-9758400-4-7

  • Castro Junior PR, Wendland E (2008) Mapeamento Morfopedológico Aplicado à Bacia-Piloto do Ribeirão da Onça (SP) e À Bacia-Escola do Rio Cachoeirinha (MT) em Áreas de Recarga do Aqüífero Guarani (Morphopedological map applied to Ribeirão da Onça (SP) monitoring basin and to Escola do Cachoeirinha (MT) Basin in Guarani aquifer outcrop areas). PROCAD – Programa Nacional de Cooperação Acadêmica – CAPES, USP/EESC (Soil map)

  • Contin Neto D (1987) Balanço Hídrico situada em área de recarga do Aquífero Botucatu (Water Balance located in the recharge area of the Botucatu aquifer). PhD Thesis, University of São Paulo

  • Darabi H, Shahedi K, Solaimani K, Miryaghoubzadeh M (2014) Prioritization of subwatersheds based on flooding conditions using hydrological model, multivariate analysis and remote sensing technique. Water Environ J 28(3):382–392. doi:10.1111/wej.12047

  • Fenicia F, Mcdonell JJ, Savenije HHG (2008) Learning from model improvement: on the contribution of complementary data to process understanding. Water Resour Res 44:1–13. doi:10.1029/2007WR006386

    Article  Google Scholar 

  • Fischer C, Kralisch S, Krause P, Fink M, Flügel WA (2009) Calibration of hydrological model parameters with the JAMS framework. In: 18th World IMACS / MODSIM Congress, Cairns, Australia 13–17

  • Flügel WA (1995) Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the river Bröl, Germany. Hydrol Process 9:423–436

    Article  Google Scholar 

  • Goméz AA, Rodríguez LB, Vives LS (2010) The Guarani Aquifer System: estimation of recharge along the Uruguay-Brazil border. Hydrogeol J 18:1667–1684. doi:10.1007/s10040-010-0630-0

    Article  Google Scholar 

  • Gouvêa TH (2009) Análise estatística da influência da precipitação e de características do solo na variação do nível d’água em área de recarga do aquífero Guarani (Statistical analysis of the influence of rainfall and soil characteristics on the variation of water level in the recharge area of the Guarani aquifer). Dissertation, University of São Paulo

  • Gouvêa TH, Wendland E (2011) Influência de características do solo na variação do nível d água em região de recarga do Aquífero Guarani. Rev Bras Recur Hidr 16(1):55–65. https://www.abrh.org.br/. Accessed 04 September 2015

  • Guanabara RC (2011) Modelo transiente de fluxo em área de afloramento do Sistema Aquífero Guarani (Transiente flow model in outcrop area of Guarani Aquifer System). Dissertation, University of São Paulo

  • Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4:135–143. doi:10.1061/(ASCE)1084-0699(1999)4:2(135)

    Article  Google Scholar 

  • Kipka H, Pfennig B, Fink M, Kralisch S, Krause P, Flügel W (2010) Comparative application and analysis from a one-dimensional and a multi-dimensional routing scheme and its impact on process oriented hydrological modeling with the Jena Adaptable Modelling System (JAMS) and the integrated hydrological, nutrient transport and erosion modeling system J2000-SE. In AGU Fall Meeting Abstracts 1:817)

  • Klemes V (1986) Operational testing of hydrological simulation models. Hydrol Sci 31:13–24. doi:10.1080/02626668609491024

    Article  Google Scholar 

  • Kralisch S, Krause P (2006) JAMS - a framework for natural resource model development and application. In: Voinov A, Jakeman A, Rizzoli A (Ed) Proceedings of the iEMSs Third Biannual Meeting “Summit on Environmental Modelling and Software”, Burlington, USA. http://www.iemss.org/iemss2006/papers/s5/254_Kralisch_1-4.pdf. Accessed 20 January 2014

  • Krause P (2001) Das hydrologische Modellsystem J2000: Beschreibung und Anwendung in grossen Flussgebieten (The hydrological modelling system J2000: Documentation and application in large river basins). Forschungszentrum, Zentralbibliothek, Jülich

    Google Scholar 

  • Krause P (2002) Quantifying the impact of land use changes on the water balance of large catchments using the J2000 model. Phys Chem Earth 27:663–673. doi:10.1016/S1474-7065(02)00051-7

    Article  Google Scholar 

  • Krause P, Flügel WA (2005) Integrated research on the hydrological process dynamics from the Wilde Gera catchment in Germany. In: Headwater Control VI: Hydrology, Ecology and Water Resources in Headwaters, IAHS Conference, Bergen, Norway

  • Krause P, Hanisch S (2009) Simulation and analysis of the impact of projected climate change on the spatially distributed water balance in Thuringia, Germany. Adv Geosci 21:33–48. doi:10.5194/adgeo-21-33-2009

    Article  Google Scholar 

  • Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97. doi:10.5194/adgeo-5-89-2005

    Article  Google Scholar 

  • Krause P, Bäse F, Bende-Michl U, Fink M, Flügel W, Pfenning B (2006) Multiscale investigations in a mesoscale catchment—hydrological modelling in the Gera catchement. Adv Geosci 9:53–61. doi:10.5194/adgeo-9-53-2006

    Article  Google Scholar 

  • Lucas MC, Wendland E (2015) Recharge estimates for various land uses in the Guarani Aquifer System outcrop area. Hydrol Sci J. doi:10.1080/02626667.2015.1031760

    Google Scholar 

  • Lucas MC, Oliveira PT, Melo DC, Wendland E (2015) Evaluation of remotely sensed data for estimating recharge to an outcrop zone of the Guarani Aquifer System (South America). Hydrogeol J 23(5):1–9. doi:10.1007/s10040-015-1246-1

    Article  Google Scholar 

  • Maldonado LH, Wendland EC, Porto RM (2015) Evaluation of low-cost methods for the measurement of discharge into rivers. Rev Ambient Água 10(2):402–412. doi:10.4136/ambi-agua.1293

    Article  Google Scholar 

  • Manzione RL, Wendland E, Tanikawa DH (2012) Stochastic simulation of time-series models combined with geostatistics to predict water-table scenarios in a Guarani Aquifer System outcrop area. Hydrogeol J 20:1239–1249. doi:10.1007/s10040-012-0885-8

    Article  Google Scholar 

  • Marshall H (1998) Sensitivity analysis. In: Dorf RC (ed) Technology management handbook. CRC Press, USA, pp 8–59–8–62

    Google Scholar 

  • Medeiros PV, Marcuzzo FFN, Youlton C, Wendland E (2012) Error autocorrelation and linear regression for temperature-based evapotranspiration estimates improvement1. J Am Water Resour Assoc 48:297–305. doi:10.1111/j.1752-1688.2011.00614.x

    Article  Google Scholar 

  • Ministério do Meio Ambiente (Brazilian Environmental Minister) – MMA (2008). TOPODATA: local geomorphometric data. http://geocatalogo.ibama.gov.br/. Accessed 15 January 2014

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans Am Soc Agric Biol Eng 50:885–900. doi:10.13031/2013.23153

    Google Scholar 

  • Nash J, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for base flow and recession analyses. Water Resour Res 26:1465–1473. doi:10.1029/WR026i007p01465

    Article  Google Scholar 

  • Nepal S, Krause P, Flügel WA, Fink M, Fischer C (2014) Understanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological model. Hydrol Process 28:1329–1344. doi:10.1002/hyp.9627

    Article  Google Scholar 

  • Organization of American States – Inter-American Committee on Culture (OAS-CIC) (2011) Programa Marco para la gestión sostenible de los recursos hídricos con relación a los efectos de la variabilidad y el cambio climático. http://www.proyectoscic.org/. Accessed 14 January 2014

  • Oroud IM (2015) Water budget assessment within a typical semiarid watershed in the Eastern Mediterranean. Environ Process 2(2):395–409. doi:10.1007/s40710-015-0072-8

    Article  Google Scholar 

  • Perrota MM, Salvador ED, Lopes RC, D’Agostino LZ, Peruffo N, Gomes SD, Sachs LLB, Meira VT, Garcia MGM, Lacerda Filho JV (2005) Mapa Geológico do Estado de São Paulo, Escala 1:750.000 (Geological Map of the State of São Paulo, Scale 1:750.000). http://geobank.sa.cprm.gov.br/. Accessed 05 June 2010

  • Rabelo JL, Wendland E (2009) Assessment of groundwater recharge and water fluxes of the Guarani Aquifer System, Brazil. Hydrogeol J 17:1733–1748. doi:10.1007/s10040-009-0462-y

    Article  Google Scholar 

  • Rödiger T, Siebert C, Krause P (2008) Linkage of a finite element flow model with a soil moisture model: challanges under semiarid conditions. AGU Fall Meeting Abstracts 6

  • Rodríguez L, Vives L, Gomez A (2013) Conceptual and numerical modeling approach of the Guarani Aquifer System. Hydrol Earth Syst Sci 17:295–314. doi:10.5194/hess-17-295-2013

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39. doi:10.1007/s10040-0010176-2

    Article  Google Scholar 

  • Schaefli B, Harman CJ, Sivapalan M, Schymanski SJ (2011) HESS opinions: hydrologic predictions in a changing environment: behavioral modeling. Hydrol Earth Syst Sci 15:35–646. doi:10.5194/hess-15-635-2011

    Google Scholar 

  • Scheffler C, Flügel W, Krause P (2005) Effectiveness of C-bandscatterometer for hydrological tasks. Procedings 2004 Envisat and ERS Symposium, Salzburg, Austria, 6–10, September 2004

  • Schulz S, Siebert C, Rödiger T, Al-Raggad MM, Merz R (2013) Application of the water balance model J2000 to estimate groundwater recharge in a semi-arid environment: a case study in the Zarqa River catchment, NW-Jordan. Environ Earth Sci 69:605–615. doi:10.1007/s12665-013-2342-y

    Article  Google Scholar 

  • Tanikawa DH, Manzione RL (2010) Análise temporal do uso e ocupação do solo em uma bacia hidrográfica em área de recarga do aquífero Guarani (Temporal analysis of the use and occupation of land in a watershed area in Guarani aquifer recharge). SBC, Rio de Janeiro 724–729

  • Tujchneider O, Perez MA, Paris MC, D’Elia MP (2003) The Guarani Aquifer system: a resource shared by four countries. Proceedings of The International Scientific Conference Devoted To The 100th Anniversary Of Academician G. V. Bogomolov, 2003 Seattle Annual Meeting 35(6):198

  • van Griensven A, Meixner T, Srinivasan R, Grunwald S (2008) Fit-for-purpose analysis of uncertainty using split-sampling evaluations. Hydrol Sci J 53:1090–1103

    Article  Google Scholar 

  • Wendland E, Barreto CEA, Gomes LH (2007) Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring. J Hydrol 342:261–269. doi:10.1016/j.jhydrol.2007.05.033

    Article  Google Scholar 

  • Wendland E, Gomes LH, Tröger U (2015) Recharge contribution to the Guarani Aquifer System estimated from the water balance method in a representative watershed. An Acad Bras Cienc 87(2):595–609. doi:10.1590/0001-3765201520140062

    Article  Google Scholar 

  • Wolf M, Pfennig B, Krause P, Flügel WA (2009) Delineation of topographic process entities using SRTM for hydrological modeling. In: 18th World IMACS/MODSIM Congress, Proceedings…Caims, Australia, 2009

  • Yang J, Liu Y, Yang W, Chen Y (2012) Multi-objective sensitivity analysis of a fully distributed hydrologic model wetspa. Water Resour Manag 26:109–128. doi:10.1007/s11269-011-9908-9

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support offered by Deutscher Akademischer Austauschdienst (German Academic Exchange Service (DAAD) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council of Technological and Scientific Development – CNPq) which made the development of the present study feasible. We appreciate the valuable comments and careful reviews from editors and the anonymous reviewers who helped to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline R. Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, A.R., Wendland, E. & Krause, P. Hydrologic Simulation for Water Balance Improvement in an Outcrop Area of the Guarani Aquifer System. Environ. Process. 3, 19–38 (2016). https://doi.org/10.1007/s40710-016-0128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-016-0128-4

Keywords

Navigation