Skip to main content

Advertisement

Log in

The Role of Economic Diversification in Forest Ecosystem Management

  • Forest Management (H Vacik, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We give an overview of economic drivers and consequences of diversification in forest management. Starting with formal portfolio-theory analyses of the optimal forest composition, we review other, often-disregarded factors that influence diversification. A special focus of our review is the interrelation between economic diversification and multifunctionality, asking if optimal economic diversification supports increased levels of multiple ecosystem services as a positive externality.

Recent Findings

Analyses considering economic diversification in forest management mainly build on Markowitz’ theory of portfolio selection, which is essentially a statistical theory. They emphasize that the economic diversification of forest composition, regeneration and/or thinning strategies, quality of timber logs, or age classes can significantly reduce risks. Further studies assume that risk-averse landowners will provide benefits for the society as a by-product of their management strategies, because economic diversification is usually associated with enhanced biodiversity and higher levels of multiple ecosystem services.

Summary

We identify drivers and consequences of economic diversification that have been seldom addressed in previous studies. These include the aim to achieve subsistence, to balance site-dependent marginal economic return among various stand types, to utilize synergistic effects between mixed tree species and to achieve averaging effects over time (time diversification). Another important factor influencing and influenced by diversification is multifunctionality, because economic diversification alone does not necessarily automatically provide a larger range of uncertain ecosystem services. Consequently, future research could extend classical portfolio approaches to multi-objective, robust optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Crop diversification is reduced when there are other means available to protect against return volatility of single crops. For example, if landowners have access to insurance or obtain off-farm (off-forest) income, they tend to diversify their crops less.

  2. Addition by the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Naeem S, Chapin III FS, Costanza R, Ehrlich PR, Golley FB, Hooper DU, et al. Biodiversity and ecosystem functioning: maintaining natural life support processes. Issues in ecology. 1999;4.

  2. Naeem S, Duffy JE, Zavaleta E. The functions of biological diversity in an age of extinction. Science. 2012;336:1401. doi:10.1126/science.1215855.

    Article  CAS  Google Scholar 

  3. Figge F. Bio-folio: applying portfolio theory to biodiversity. Biodivers Conserv. 2004;13:827–49. doi:10.1023/B:BIOC.0000011729.93889.34.

    Article  Google Scholar 

  4. Figge F. Managing biodiversity correctly—efficient portfolio management as an effective way of protecting species: Gerling Versicherungs-Beteiligungs-AG; 2002.

  5. Di Falco S, Perrings C. Crop biodiversity, risk management and the implications of agricultural assistance. Ecol Econ. 2005;55:459–66. doi:10.1016/j.ecolecon.2004.12.005.

    Article  Google Scholar 

  6. Baumgärtner S, Quaas MF. Managing increasing environmental risks through agrobiodiversity and agrienvironmental policies. Agric Econ. 2010;41:483–96. doi:10.1111/j.1574-0862.2010.00460.x.

    Article  Google Scholar 

  7. Peters, MD, Schraml U. Sustainability Frames in the Context of the Energy Wood Conflict in Germany. Sustainability. 2015;7. doi:10.3390/su71114501.

  8. Marinoni O, Adkins P, Hajkowicz S. Water planning in a changing climate: joint application of cost utility analysis and modern portfolio theory. Env Modell Software. 2011;26:18–29. doi:10.1016/j.envsoft.2010.03.001.

    Article  Google Scholar 

  9. Ando AW, Mallory ML. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region. Proc of the Natl Acad Sci. 2012;109:6484–9. doi:10.1073/pnas.1114653109.

    Article  CAS  Google Scholar 

  10. Rădulescu M, Rădulescu CZ, Zbăganu G. A portfolio theory approach to crop planning under environmental constraints. Ann Oper Res. 2014;219:243–64. doi:10.1007/s10479-011-0902-7.

    Article  Google Scholar 

  11. Griffiths JR, Schindler DE, Armstrong JB, Scheuerell MD, Whited DC, Clark RA, et al. Performance of salmon fishery portfolios across western North America. J Appl Ecol. 2014;51:1554–63. doi:10.1111/1365-2664.12341.

    Article  Google Scholar 

  12. Schindler DE, Hilborn R, Chasco B, Boatright CP, Quinn TP, Rogers LA, et al. Population diversity and the portfolio effect in an exploited species. Nature. 2010;465:609–12. doi:10.1038/nature09060.

    Article  CAS  Google Scholar 

  13. Knoke T, Ammer C, Stimm B, Mosandl R. Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res. 2008;127:89–101.

    Article  Google Scholar 

  14. Schütz J-P. Geschichtlicher Hergang und aktuelle Bedeutung der Plenterung in Europa. AFJZ. 1994;165:106–14.

    Google Scholar 

  15. Lopez J, De La Torre R, Cubbage F. Effect of land prices, transportation costs, and site productivity on timber investment returns for pine plantations in Colombia. New For. 2010;39:313–28. doi:10.1007/s11056-009-9173-4.

    Article  Google Scholar 

  16. Marutani T. The effect of site quality on economically optimal stand management. J Forest Econ. 2010;16:35–46. doi:10.1016/j.jfe.2009.05.001.

    Article  Google Scholar 

  17. Clasen C, Knoke T. Site conditions have an impact on compensation payments for the loss of tree species in mixed forests. Forestry. 2013;86:533–42. doi:10.1093/forestry/cpt027.

    Article  Google Scholar 

  18. von Thünen, JH. Der isolirte Staat in Beziehung auf Landwirthschaft und Nationalökonomie: Die naturgemässe Arbeitslose und dessen Verhältniss zum Zinsfuss und zur Landwirte. II. Theil, I. Abtheilung. Rostock, Germany: Leopold; 1845.

  19. Knoke T, Steinbeis O-E, Bösch M, Román-Cuesta RM, Burkhardt T. Cost-effective compensation to avoid carbon emissions from forest loss: an approach to consider price–quantity effects and risk-aversion. Ecol Econ. 2011;70:1139–53. doi:10.1016/j.ecolecon.2011.01.007.

    Article  Google Scholar 

  20. • Neuner S, Albrecht A, Cullmann D, Engels F, Griess VC, Hahn WA, et al. Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Change Biol. 2015;21:935–46. doi:10.1111/gcb.12751. Analyse the effect of species mixture on survival probability for Norway spruce and European beech

    Article  Google Scholar 

  21. Pretzsch H, Schütze G. Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Europ J Forest Res. 2009;128:183–204. doi:10.1007/s10342-008-0215-9.

    Article  Google Scholar 

  22. Kritzman M. What practitioners need to know… about time diversification (corrected). Finan Analysts J. 2015;71:29–34. doi:10.2469/faj.v71.n1.4.

  23. Gamfeldt L, Snall T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun. 2013;4:1340. doi:10.1038/ncomms2328.

    Article  Google Scholar 

  24. Markowitz H. Portfolio selection. J Fin. 1952;7:77–91. doi:10.1111/j.1540-6261.1952.tb01525.x.

    Google Scholar 

  25. Macmillan WD. Risk and agricultural land use: a reformulation of the portfolio-theoretic approach to the analysis of a von Thünen economy. Geogr Anal. 1992;24:142–58. doi:10.1111/j.1538-4632.1992.tb00257.x.

    Article  Google Scholar 

  26. Abson DJ, Fraser EDG, Benton TG. Landscape diversity and the resilience of agricultural returns: a portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric Food Secur. 2013;2:2. doi:10.1186/2048-7010-2-2.

    Article  Google Scholar 

  27. Djanibekov U, Khamzina A. Stochastic economic assessment of afforestation on marginal land in irrigated farming system. Envir Resour Econ. 2016;63:95–117. doi:10.1007/s10640-014-9843-3.

    Article  Google Scholar 

  28. Raes L, D’Haese M, Aguirre N, Knoke T. A portfolio analysis of incentive programmes for conservation, restoration and timber plantations in southern Ecuador. Land Use Pol. 2016;51:244–59. doi:10.1016/j.landusepol.2015.11.019.

    Article  Google Scholar 

  29. Dieter M, Moog M, Borchert H. Considering serious hazards in forest management decision-making. In: von Gadow K, editor. Risk analysis in forest management. Dordrecht: Springer Netherlands; 2001. p. 201–32. doi:10.1007/978-94-017-2905-5_8.

    Chapter  Google Scholar 

  30. Markowitz H. Mean–variance approximations to expected utility. Eur J Oper Res. 2014;234:346–55. doi:10.1016/j.ejor.2012.08.023.

    Article  Google Scholar 

  31. Neuner S, Beinhofer B, Knoke T. The optimal tree species composition for a private forest enterprise—applying the theory of portfolio selection. Scand J For Res. 2013;28:38–48. doi:10.1080/02827581.2012.683038.

    Article  Google Scholar 

  32. Brunette M, Dragicevic A, Lenglet J, Niedzwiedz A, Badeau V, Dupouey J-L. Portfolio management of mixed-species forests: Laboratoire d’Economie Forestiere, AgroParisTech-INRA; 2014. Working Papers - Cahiers du LEF 2014–09. http://EconPapers.repec.org/RePEc:lef:wpaper:2014–09.

  33. Dragicevic A, Lobianco A, Leblois A. Forest planning and productivity-risk trade-off through the Markowitz mean-variance model. For Pol Econ. 2016;64:25–34. doi:10.1016/j.forpol.2015.12.010.

    Article  Google Scholar 

  34. Thomson TA. Efficient combinations of timber and financial market investments in single-period and multiperiod portfolios. For Sci. 1991;37:461–80.

    Google Scholar 

  35. Knoke T, Stimm B, Ammer C, Moog M. Mixed forests reconsidered: a forest economics contribution on an ecological concept. For Ecol Manag. 2005;213:102–16. doi:10.1016/j.foreco.2005.03.043.

  36. Hyytiäinen K, Penttinen M. Applying portfolio optimisation to the harvesting decisions of non-industrial private forest owners. For Pol Econ. 2008;10:151–60. doi:10.1016/j.forpol.2007.07.002.

    Article  Google Scholar 

  37. Beinhofer BT. Zur Anwendung der Portfoliotheorie in der Forstwissenschaft – Finanzielle Optimierungsansätze zur Bewertung von Diversifikationseffekten. München: Technische Universität München; 2009.

    Google Scholar 

  38. • Matthies BD, Kalliokoski T, Ekholm T, Hoen HF, Valsta LT. Risk, reward, and payments for ecosystem services: a portfolio approach to ecosystem services and forestland investment. Ecosyst Serv. 2015;16:1–12. doi:10.1016/j.ecoser.2015.08.006. Demonstrates that Payments for Ecosystem Services can have financial diversification benefits for European forest owners

    Article  Google Scholar 

  39. Apiolaza L, Alzamora R. Building deployment portfolios for genotypes under performance instability. Silva Fenn. 2013;47. doi:10.14214/sf.901.

  40. Bertsimas D, Lauprete GJ, Samarov A. Shortfall as a risk measure: properties, optimization and applications. J Econ Dyn Contr. 2004;28:1353–81. doi:10.1016/S0165-1889(03)00109-X.

    Article  Google Scholar 

  41. Reeves LH, Haight RG. Timber harvest scheduling with price uncertainty using Markowitz portfolio optimization. Ann Oper Res. 2000;95:229–50. doi:10.1023/A:1018974712925.

    Article  Google Scholar 

  42. Griess VC, Uhde B, Ham C, Seifert T. Product diversification in South Africa’s commercial timber plantations: a way to mitigate investment risk. Southern Forests. 2016;78:145–50. doi:10.2989/20702620.2015.1136508.

    Article  Google Scholar 

  43. Beinhofer B. Comparing the financial performance of traditionally managed beech and oak stands with roomy established and pruned stands. Eur J For Res. 2010;129:175–87. doi:10.1007/s10342-009-0311-5.

    Article  Google Scholar 

  44. Kurth H. Forsteinrichtung: Nachhaltige Regelung des Waldes. Berlin: Deutscher Landschaftsverlag; 1994.

    Google Scholar 

  45. Goldfarb D, Iyengar G. Robust portfolio selection problems. Mathematics of OR. 2003;28:1–38. doi:10.1287/moor.28.1.1.14260.

  46. Mohamed-Katerere J, Smith M. The role of ecosystems in food security. Unasylva. 2013;64.

  47. FAO. Towards food security and improved nutrition: increasing the contribution of forests and trees: Policy Brief: Food and Agriculture Organization of the United Nations; 2013.

  48. Pannell DJ, Llewellyn RS, Corbeels M. The farm-level economics of conservation agriculture for resource-poor farmers. Agric Ecosyst Env. 2014;187:52–64. doi:10.1016/j.agee.2013.10.014.

    Article  Google Scholar 

  49. Bartolini F, Andreoli M, Brunori G. Explaining determinants of the on-farm diversification: empirical evidence from Tuscany region. Bio-based and Appl Econ. 2014;3:137. doi:10.13128/BAE-12994.

  50. Lin BB. Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience. 2011;61:183–93. doi:10.1525/bio.2011.61.3.4.

    Article  Google Scholar 

  51. Samuelson PA. Thünen at two hundred. J Econ Lit. 1983;21:1468–88.

    Google Scholar 

  52. Benítez PC, Kuosmanen T, Olschewski R, Van Kooten Cornelis G. Conservation payments under risk: a stochastic dominance approach. Am J Agric Econ. 2006;88:1–15. doi:10.1111/j.1467-8276.2006.00835.x.

  53. Knoke T, Román-Cuesta RM, Weber M, Haber W. How can climate policy benefit from comprehensive land-use approaches? Front Ecol Env. 2012;10:438–45. doi:10.1890/110203.

  54. Messerer K. Ökonomische Bewertung von Agroforstsystemen in der Dominikanischen Republik: Ein Optimierungsansatz unter Einbeziehung von Risiken und betrieblichen Restriktionen: Master‘s Thesis. Freising: TUM School of Life Sciences, Weihenstephan, Technische Universität München; 2015.

  55. Koellner T, Schmitz OJ. Biodiversity, ecosystem function, and investment risk. Bioscience. 2006;56:977–85. doi:10.1641/0006-3568(2006)56[977:BEFAIR]2.0.CO;2.

  56. Forrester DI, Bauhus J. A review of processes behind diversity—productivity relationships in forests. Curr For Rep. 2016;2:45–61. doi:10.1007/s40725-016-0031-2.

  57. Knoke T, Seifert T. Integrating selected ecological effects of mixed European beech–Norway spruce stands in bioeconomic modelling. Ecol Model. 2008;210:487–98. doi:10.1016/j.ecolmodel.2007.08.011.

    Article  Google Scholar 

  58. Griess V, Knoke T. Bioeconomic modeling of mixed Norway spruce—European beech stands: economic consequences of considering ecological effects. Eur J Forest Res. 2013;132:511–22. doi:10.1007/s10342-013-0692-3.

    Article  Google Scholar 

  59. Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T. Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag. 2012;267:284–96. doi:10.1016/j.foreco.2011.11.035.

    Article  Google Scholar 

  60. Roessiger J, Griess VC, Härtl F, Clasen C, Knoke T. How economic performance of a stand increases due to decreased failure risk associated with the admixing of species. Ecol Model. 2013;255:58–69. doi:10.1016/j.ecolmodel.2013.01.019.

    Article  Google Scholar 

  61. Roessiger J, Griess VC, Knoke T. May risk aversion lead to near-natural forestry? A simulation study. Forestry. 2011;84:527–37. doi:10.1093/forestry/cpr017.

  62. Neuner S. Baumartenwahl im Klimawandel: Geänderte Überlebenswahrscheinlichkeiten und finanzielle Konsequenzen für Fichte, Buche und deren Mischbestände: Dissertation: Technische Universität München; 2016.

  63. Neuner S, Knoke T. Economic consequences of altered survival of mixed or pure Norway spruce under a dryer and warmer climate. Clim Chang. 2017 (online first). doi:10.1007/s10584–016-1891-y.

  64. Samuelson PA. Risk and uncertainty: a fallacy of large numbers. Scientia. 1963;57:1–6.

    Google Scholar 

  65. Strong N, Taylor N. Time diversification: empirical tests. J Bus Fin Account. 2001;28:263–302. doi:10.1111/1468-5957.00374.

    Article  Google Scholar 

  66. Thavonen O, Kallio M. Optimal harvesting of forest age classes under price uncertainty and risk aversion. Nat Res Model. 2006;19:557–85. doi:10.1111/j.1939-7445.2006.tb00194.x.

    Article  Google Scholar 

  67. Härtl F, Hahn A, Knoke T. Risk-sensitive planning support for forest enterprises: the YAFO model. Comp Electr Agric. 2013;94:58–70. doi:10.1016/j.compag.2013.03.004.

    Article  Google Scholar 

  68. Hahn WA, Härtl F, Irland LC, Kohler C, Moshammer R, Knoke T. Financially optimized management planning under risk aversion results in even-flow sustained timber yield. For Pol Econ. 2014;42:30–41. doi:10.1016/j.forpol.2014.02.002.

    Article  Google Scholar 

  69. Hanewinkel M, Kuhn T, Bugmann H, Lanz A, Brang P. Vulnerability of uneven-aged forests to storm damage. Forestry. 2014;87:525–34. doi:10.1093/forestry/cpu008.

    Article  Google Scholar 

  70. Dixit AK, Pindyck RS. Investment under uncertainty: Princeton University Press; 1994.

  71. Brazee R, Mendelsohn R. Timber harvesting with fluctuating prices. For Sci. 1988;34:359–72.

    Google Scholar 

  72. Jacobsen JB, Helles F. Adaptive and nonadaptive harvesting in uneven-aged beech forest with stochastic prices. For Policy Econ. 2006;8:223–38. doi:10.1016/j.forpol.2004.06.004.

    Article  Google Scholar 

  73. Jacobsen JB, Thorsen BJ. A Danish example of optimal thinning strategies in mixed-species forest under changing growth conditions caused by climate change. For Ecol Manag. 2003;180:375–88. doi:10.1016/S0378-1127(02)00652-7.

    Article  Google Scholar 

  74. Schou E, Thorsen BJ, Jacobsen JB. Regeneration decisions in forestry under climate change related uncertainties and risks: effects of three different aspects of uncertainty. For Policy Econ. 2015;50:11–9. doi:10.1016/j.forpol.2014.09.006.

    Article  Google Scholar 

  75. Schou E, Jacobsen JB, Kristensen KL. An economic evaluation of strategies for transforming even-aged into near-natural forestry in a conifer-dominated forest in Denmark. Forest Policy Econ. 2012;20:89–98. doi:10.1016/j.forpol.2012.02.010.

    Article  Google Scholar 

  76. Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC, et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature. 2016;536:456–9. doi:10.1038/nature19092.

  77. Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, De Jong H, et al. Landscape simplification filters species traits and drives biotic homogenization. Nat Commun. 2015;6;8568. doi:10.1038/ncomms9568.

  78. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol Rev. 2012;87:661–85. doi:10.1111/j.1469-185X.2011.00216.x.

  79. Kremen C, Miles A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. E&S. 2012;17 doi:10.5751/ES-05035-170440.

  80. • Knoke T, Paul C, Hildebrandt P, Calvas B, Castro LM, Hartl F, et al. Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nat Commun. 2016;7:11877. doi:10.1038/ncomms11877. Suggest a robust multi-objective optimization approach for restoration planning. They demonstrate that a diversified landscape may achieve a balanced provision of multiple ecosystem services under uncertainty.

  81. Chang N-B, Wen CG, Wu SL. Optimal management of environmental and land resources in a reservoir watershed by multiobjective programming. J Env Manage. 1995;44:144–61. doi:10.1006/jema.1995.0036.

    Article  Google Scholar 

  82. • Estrella R, Cattrysse D, van Orshoven J. Comparison of three ideal point-based multi-criteria decision methods for afforestation planning. Forests. 2014;5. doi:10.3390/f5123222. Suggest a balanced compromise programming approach to optimize ecosystem services.

  83. Ben-Tal A, El Ghaoui L, Nemirovski A. Robust optimization: Princeton University Press; 2009.

  84. Knoke T, Paul C, Härtl F, Castro LM, Calvas B, Hildebrandt P. Optimizing agricultural land-use portfolios with scarce data—a non-stochastic model. Ecol Econ. 2015;120:250–9. doi:10.1016/j.ecolecon.2015.10.021.

    Article  Google Scholar 

  85. Koschke L, Fürst C, Frank S, Makeschin F. A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning. Ecol Indic. 2012;21:54–66. doi:10.1016/j.ecolind.2011.12.010.

    Article  Google Scholar 

  86. Romero C. Extended lexicographic goal programming: a unifying approach. Omega. 2001;29:63–71. doi:10.1016/S0305-0483(00)00026-8.

    Article  Google Scholar 

  87. Diaz-Balteiro L, Romero C. Making forestry decisions with multiple criteria: a review and an assessment. For Ecol Manag. 2008;255:3222–41. doi:10.1016/j.foreco.2008.01.038.

    Article  Google Scholar 

  88. Daniel M, Walter S. Evaluation of the toolkit for risk management in forest management planning. Centbl gesamte Forstwes. 2016;133:251.

    Google Scholar 

  89. Nürnberger K, Hahn A, Jörg R, Thomas K, editors. Unerwünschte Effekte der Einkommensteuergesetzgebung auf die Wahl waldbaulicher Alternativen: Eine Simulationsstudie aus der Sicht eines risikomeidenden Entscheiders: German Association of Agricultural Economists (GEWISOLA); 2013.

Download references

Acknowledgments

This review is based on past and present research of the authors on diversification in forest and land-use management funded by the German Research foundation (DFG KN 586/9-1 and KN 586/11-1) and the Federal Ministry of Food and Agriculture of Germany (Waldklimafonds Project SURVIVAL-KW (FKZ: 28W-C-4-088-01)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Knoke.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Forest Management

Electronic Supplementary Material

ESM 1

(DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knoke, T., Messerer, K. & Paul, C. The Role of Economic Diversification in Forest Ecosystem Management. Curr Forestry Rep 3, 93–106 (2017). https://doi.org/10.1007/s40725-017-0054-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-017-0054-3

Keywords

Navigation