Skip to main content
Log in

Evaluation of Mechanical Properties and Corrosion Protection Performance of Surface Modified Nano-alumina Encapsulated Epoxy Coated Mild Steel

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The incorporation of imidazole-modified nano-alumina on the corrosion protection properties of epoxy coating on mild steel was studied by electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) in 3.5% NaCl solution. The dispersability of the alumina nanoparticles was greatly improved by the surface modification using imidazole in the epoxy matrix. The imidazole-modified nanoparticle was analyzed by Fourier transform infrared spectroscopy. Both EIS and SECM studies confirmed that the corrosion resistance is higher for the alumina–epoxy nanocomposite coated steel than that of the pure epoxy-coated steel. It is evidenced that alumina–epoxy nanocomposite coated mild steel has higher charge transfer resistance values, 156,344 Ω cm2, compared to pure epoxy coated mild steel, 79,546 Ω cm2, at 40 days of immersion. The modified nanoparticles enhanced the adhesive properties of the coatings. Possible chemical interactions between epoxy matrix and surface-modified alumina nanoparticles in nanocomposites cause high protection properties and ionic resistances. FE-SEM/EDX analysis showed the presence of Fe, Al, and O in the corrosion products. Hardness and tensile strength measurements showed that the improved mechanical properties were noticed for alumina–epoxy nanocomposite coated mild steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kumar SA, Denchev Z (2009) Siliconized epoxy-bismaleimide inter-crosslinked networks. Prog Org Coat 66:1–7

    Article  CAS  Google Scholar 

  2. Kang Y, Chen X, Song S, Yu L, Zhang P (2012) Friction and wear behavior of nanosilica filled epoxy resin composite coatings. Appl Surf Sci 258:6384–6390

    Article  CAS  Google Scholar 

  3. Asiri AM, Hussein MA, Abu-Zied BM, Hermas A-EA (2013) Effect of NiLaxFe2 − xO4 nanoparticles on the thermal and coating properties of epoxy resin composites. Compos Part B: Eng 51:11–18

    Article  CAS  Google Scholar 

  4. Brostow W, Dutta M, Rusek P (2010) Modified epoxy coatings on mild steel: tribology and surface energy. Eur Polym J 46:2181–2189

    Article  CAS  Google Scholar 

  5. Legghe E, Aragraphenen E, Bélec L, Margaillan A, Melot D (2009) Correlation between water diffusion and adhesion loss: study of an epoxy primer on steel. Prog Org Coat 66:276–280

    Article  CAS  Google Scholar 

  6. Popineau S, Rondeau-Mouro C, Sulpice-Gaillet C, Shanahan MER (2005) Free/bound water absorption in an epoxy adhesive. Polymer 46:10733–10740

    Article  CAS  Google Scholar 

  7. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B: Eng 39:933–961

    Article  Google Scholar 

  8. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41:1345–1367

    Article  Google Scholar 

  9. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  10. Thostenson ET, Li CY, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65:491–516

    Article  CAS  Google Scholar 

  11. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  12. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48:530–541

    Article  CAS  Google Scholar 

  13. Zou H, Wu SS, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  CAS  Google Scholar 

  14. Akhil K, Raman B, Singh S, Akhtar M (2018) EDM machinability and parametric optimisation of 2014Al/Al2O3 composite by RSM. Int J Mach Mach Mater 20:536–555

    Google Scholar 

  15. Khajuria A, Akhtar M, Pandey M, Raina MA, Bedi R, Singh B (2019) Influence of ceramic Al2O3 particulates on performance measures and surface characteristics during sinker EDM of stir cast AMMCs. World J Eng 16:526–538

    Article  CAS  Google Scholar 

  16. Zhang Z, Chen S, Li Y, Li S, Wang L (2009) A study of the inhibition of iron corrosion by imidazole and its derivatives self-assembled films. Corros Sci 51:291–300

    Article  CAS  Google Scholar 

  17. Sorensen PA, Kiil S, Dam-Johansen K, Weinell CE (2009) Anticorrosive coatings: a review. Coat Technol Res 6:135–176

    Article  CAS  Google Scholar 

  18. Le Pen C, Lacabanne C, Pebere N (2000) Structure of waterborne coatings by electrochemical impedance spectroscopy and a thermostimulated current method: influence of fillers. Prog Org Coat 39:167–175

    Article  Google Scholar 

  19. Vilche JR, Bucharsky EC, Giúdice CA (2002) Application of EIS and SEM to evaluate the influence of pigment shape and content in ZRP formulations on the corrosion prevention of naval steel. Corros Sci 44:1287–1309

    Article  CAS  Google Scholar 

  20. Bierwagen G, Battocchi D, Simões A, Stamness A, Tallman D (2007) The use of multiple electrochemical techniques to characterize mg-rich primers for Al alloys. Prog Org Coat 59:172–178

    Article  CAS  Google Scholar 

  21. Liu X, Shao Y, Zhang Y, Meng G, Zhang T, Wang F (2015) Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating—I. High- temperature ball milling treatment. Corros Sci 90:451–462

    Article  CAS  Google Scholar 

  22. Liu X, Shao Y, Zhang Y, Meng G, Zhang T, Wang F (2015) Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating – II. Effect of grinding temperature. Corros Sci 90:463–471

    Article  CAS  Google Scholar 

  23. Xavier JR (2019) Investigation on the anticorrosion, adhesion and mechanical performance of epoxy nanocomposite coatings containing epoxy-silane treated nano MoO3 on mild steel. J Adhes Sci Technol. https://doi.org/10.1080/01694243.2019.1661658

    Article  Google Scholar 

  24. Xavier JR (2019) Investigation into the effect of Cr2O3 nanoparticles on the protective properties of epoxy coatings on carbon steel in NaCl solution by scanning electrochemical microscopy. Prot Met Phys Chem 55(1):80–88. https://doi.org/10.1134/S2070205119010167

    Article  Google Scholar 

  25. Xavier JR (2019) Effect of surface modified WO3 nanoparticle on the epoxy coatings for the adhesive and anticorrosion properties of mild steel. J Appl Polym Sci 137(5):48323. https://doi.org/10.1002/APP.48323

    Article  Google Scholar 

  26. Zongxue Y, Haihui D, Yu M, Liang L, Yang P, Chunli Z, Yi H (2015) Fabrication of graphene oxide–alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings. Appl Surf Sci 351:986–996

    Article  Google Scholar 

  27. Mirabedini SM, Moradian S, Scantlebury JD, Thompson GE (2003) Characterization and corrosion performance of powder coated aluminium alloy. Iran Polym J 12:261–270

    CAS  Google Scholar 

  28. Hadavand BS, Ataeefard M, Bafghi HF (2015) Preparation of modified nano ZnO/polyester/TGIC powder coating nanocomposite and evaluation of its antibacterial activity. Compos Part B: Eng 82:190–195

    Article  Google Scholar 

  29. Ashassi-Sorkhabi H, Seifzadeh D, Raghibi-Boroujeni M (2016) Analysis of electrochemical noise data in both time and frequency domains to evaluate the effect of ZnO nanopowder addition on the corrosion protection performance of epoxy coatings. Arab J Chem 9:S1320–S1327

    Article  CAS  Google Scholar 

  30. Xavier JR (2017) Application of EIS and SECM studies for investigation of anticorrosion properties of epoxy coatings containing zinc oxide nanoparticles on mild steel in 3.5% NaCl solution. J Mater Eng Perform 26:3245–3253

    Article  Google Scholar 

  31. Bazrgari D, Moztarzadeh F, Sabbagh-Alvani A, Rasoulianboroujeni M, Tahriri M, Tayebi L (2018) Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite. Ceram Int 44:1220–1224

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Raj Xavier.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boomadevi Janaki, G., Xavier, J.R. Evaluation of Mechanical Properties and Corrosion Protection Performance of Surface Modified Nano-alumina Encapsulated Epoxy Coated Mild Steel. J Bio Tribo Corros 6, 20 (2020). https://doi.org/10.1007/s40735-019-0316-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-019-0316-7

Keywords

Navigation