Skip to main content
Log in

Experimental Study of Steam Hydroforming of Aluminum Sheet Metal

  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

This work presents an experimental study of aluminum sheet forming. A steam hydroforming process that takes advantage of the coupling between the thermal and mechanical loads applied to the sheet metal is introduced. The results confirm the feasibility of the forming process. The effects of variation of the supplied electrical power on the hydroforming temperature and steam pressure are studied. In addition, the evolution of strains and stresses in metal sheets are analyzed. The experimental results show that the supplied electrical power increases the heating rate and has no effect bursting temperature or pressure. Moreover, the evolution of the vapor pressure as a function of temperature is independent from the supplied electrical power and the deformation in the thin sheets under the steam pressure decreases the stress flow and raises the plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Haddag B (2007) Contribution à la modélisation de la mise en forme des tôles métalliques: application au retour élastique et à la localisation. PhD thesis, l’École Nationale Supérieure d'Arts et Métiers, France

  2. Ali K, Marta Cristina O, José Luís A, Temim Z (2015) Hédi, M. Luís Filipe, mechanical characterization and constitutive parameter identification of anisotropic tubular materials for hydroforming applications. Int J Mech Sci 104:91–103

    Article  Google Scholar 

  3. Ioannis K (2009) Formability and hydroforming of anisotropic aluminium tubes. PhD thesis, The University of Texas at Austin

  4. Mahfoudh A, Cherouat A, Slimani F, Mohamed-Ali R, Ali Z (2011) Experimental and numerical modeling of thermo-forming of anisotropic thin sheet. Appl Mech Mater 62:37–48

    Article  Google Scholar 

  5. Jens K, Mathias L, Jupp S, Pirchl C, Herstell R (2012) Designing superplastic forming process of a developmental AA5456 using pneumatic bulge test experiments and FE-simukation. Prod Eng Res Devel 6:219–228

    Article  Google Scholar 

  6. Vahl M, Hein P, Bobbert S (2012) Hydroforming of sheet metal pairs for the production of hollow bodies. La Revue de Métallurgie

  7. Cherouat A, Ayadi M, Mezghani N, Slimani F (2008) Experimental and finite element modeling of thin sheet hydroforming processes. Int J Mater Form 1:313–316

    Article  Google Scholar 

  8. Hecht J, Pinto S, Geiger M (2005) Mechanical properties for the hydroforming of magnesium sheets at elevated temperature. Adv Mater Res 6-8:779–786

    Article  Google Scholar 

  9. Choi H, Koç M, Ni J (2008) A study on warm hydroforming of al and mg sheet materials, mechanism and proper temperature conditions. J Manuf Sci Eng 130:410071–4100714

    Google Scholar 

  10. Abedrabboa N, Pourboghrata F (2006) Forming of aluminum alloys at elevated temperatures –part 2. Int J Plast 22:342–373

    Article  Google Scholar 

  11. Johansson M, Hörnqvist M, Karlsson B (2006) Influence of temperature and strain rate on the plastic deformation of two commercial high strength al alloys. Mater Sci Forum 519-521:841–846

    Article  Google Scholar 

  12. Koç M, Mahabunphachai S (2011) Forming characteristics of Autenitic stainless steel sheet alloys under warm hydroforming conditions. Int J Adv Manuf Technol 56:97–113

    Article  Google Scholar 

  13. Ceretti E, Braga D, Giardini C (2008) Steel and copper flow stress determination for THF applications. Int J Mater Form Supplement 1:309–312

  14. Mahabunphachai S, Koç M (2010) Investigations on forming of aluminum 5052 and 6061 sheet alloys at warm temperatures. Mater Des 31:2422–2434

    Article  Google Scholar 

  15. Slimani F (2012) Modélisation mécanique des aptitudes de formage à chaud des tôles et des tubes minces avec remaillage adaptatif en grandes déformations. PhD thesis, Ecole Nationale d’Ingénieurs de Sfax, Tunisia

  16. Koç M, Billur E (2011) Ö Necati Cora, an experimental study on the comparative assessment of hydraulic bulge test analysis methods. Mater Des 32 (1):272–281

  17. Mohsen S, Mohamed-Ali R, Ayadi M, Mourad B, Walid N, Ali Z (2012) Sheet metal forming using heated steam energy. ICEM15, Portugal

  18. Salah A, Ayadi M, Mohamed-Ali R, Soula M (2015) Behavior Analysis of the Aluminum 2017ASheet Using Vapor Bulge Test. Des Model Mech Syst-II, pp 285–295

  19. Bailly M (1971) Thermodynamique technique: Chaleur, principes, gaz et vapeurs, (3 Vol.) vol. 1. Bordas, Paris

    Google Scholar 

  20. Sanchez-Lavega A, Perez-Hoyos S, Hueso R (2004) Clouds in planetary atmospheres, a useful application of the Clausius– Clapeyron equation. Am J Phys 72:767-774

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aissa, S., Mohamed, S. & Tarek, L. Experimental Study of Steam Hydroforming of Aluminum Sheet Metal. Exp Tech 41, 525–533 (2017). https://doi.org/10.1007/s40799-017-0191-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-017-0191-4

Keywords

Navigation