Skip to main content

Advertisement

Log in

Comparison of the erosion prediction models from USLE, MUSLE and RUSLE in a Mediterranean watershed, case of Wadi Gazouana (N-W of Algeria)

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Water erosion is one of the most serious problems of soil degradation in the world, the north of Africa region is particularly exposed to this phenomenon. In fact, the phenomenon gets worse with the climate changes and the adverse anthropogenic environmental interventions. In recent decades, the estimation of soil erosion using empirical models has been a promising research topic. Nevertheless, their application over a large and ungauged areas remains a real challenge due to the availability and quality of the required data. Using the GIS environment, this study aims to estimate and compare the water erosion rates by the three models of Universal Soil Loss Equation (USLE), Modified Universal Soil Loss Equation (MUSLE) and Revised Universal Soil Loss Equation (RUSLE) in Wadi Gazouana North-West of Algeria. The estimated specific erosion in the entire wadi Ghazouana watershed surface is 9.65, (t/ha/year), 9.90 (t/ha/year) and 11.33 (t/ha/year) by USLE, RUSLE and MUSLE models, respectively. We can also conclude that USLE, RUSLE and MUSLE soil erosion models produced relatively similar results, however, the MUSLE model showed a higher spatial dispersion of the erosion risk compared to the others. The rain factor in this model was more effective; which explain its higher erosion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A:

The computed average soil loss (t/ha/year)

Q:

Volume of runoff in (m3)

qp :

Peak flow rate in (m3/s)

R:

Rainfall erosivity in (MJ/ha mm/h)

Pi:

The monthly precipitation (mm)

P:

The annual precipitation (mm)

S:

Surface (km2)

References

  • Abdo H, Salloum J (2017) Spatial assessment of soil erosion in Alqerdaha basin (Syria). Model Earth Syst Environ 3:26. https://doi.org/10.1007/s40808-017-0294-z

    Article  Google Scholar 

  • Bangash RF, Passuello A, Sanchez-Canales M et al (2013) Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control. Sci Total Environ 458–460:246–255. https://doi.org/10.1016/j.scitotenv.2013.04.025

    Article  Google Scholar 

  • Beasley DB, Huggins LF, Monke EJ (1980) ANSWERS: a model for watershed planning. Trans ASAE 23:0938–0944. https://doi.org/10.13031/2013.34692

    Article  Google Scholar 

  • Benchettouh A, Kouri L, Jebari S (2017) Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arab J Geosci. https://doi.org/10.1007/s12517-017-2875-6

    Google Scholar 

  • Bera A (2017) Assessment of soil loss by universal soil loss equation (USLE) model using GIS techniques: a case study of Gumti River Basin, Tripura, India. Model Earth Syst Environ 3:29. https://doi.org/10.1007/s40808-017-0289-9

    Article  Google Scholar 

  • Bouguerra H, Bouanani A, Khanchoul K et al (2017) Mapping erosion prone areas in the Bouhamdane watershed (Algeria) using the Revised Universal Soil Loss Equation through GIS. J Water Land Dev 32:13–23. https://doi.org/10.1515/jwld-2017-0002

    Article  Google Scholar 

  • Bryan K, Albritton CC (1943) Soil phenomena as evidence of climatic changes. Am J Sci 241:469–490

    Article  Google Scholar 

  • Chiew FHS, Whetton PH, McMahon TA, Pittock AB (1995) Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments. J Hydrol 167:121–147. https://doi.org/10.1016/0022-1694(94)02649-V

    Article  Google Scholar 

  • Cormary Y, Masson J (1964) Etude de conservation des eaux et du sol au Centre de Recherches du Génie Rural de Tunisie: application à un projet-type de la formule de perte de sols de Wischmeier. Cahiers ORSTOM, série pédologie 2.3:3–26

  • da Cunha ER, Bacani VM, Panachuki E (2017) Modeling soil erosion using RUSLE and GIS in a watershed occupied by rural settlement in the Brazilian Cerrado. Nat Hazards 85:851–868. https://doi.org/10.1007/s11069-016-2607-3

    Article  Google Scholar 

  • Davis FM, Leonard RA, Knisel WG (1990) Groundwater loading effects of agricultural management systems (GLEAMS) user manual. USDA-ARS Southeast Watershed Res Lab Univ Georg Tifton, Tifton

    Google Scholar 

  • Demmak A (1982) Contribution à l’étude de l’érosion et des transports solides en Algérie septentrionale [Contribution to the study of erosion and sediment transport in northern Algeria]. PhD Thesis, Manuscript, Université de Pierre et Marie Curie, Paris

  • Djoukbala O, Mazour M, Hasbaia M, Benselama O (2018) Estimating of water erosion in semiarid regions using RUSLE equation under GIS environment. Environ Earth Sci 77:345. https://doi.org/10.1007/s12665-018-7532-1

    Article  Google Scholar 

  • Elaloui A, Marrakchi C, Fekri A et al (2017) USLE-based assessment of soil erosion by water in the watershed upstream Tessaoute (Central High Atlas, Morocco). Model Earth Syst Environ 3:873–885. https://doi.org/10.1007/s40808-017-0340-x

    Article  Google Scholar 

  • Elwell HA (1978) (1978) Modelling soil losses in Southern Africa. J Agric Eng Res 23:117–127

    Article  Google Scholar 

  • FAO and ISRIC (2012) Harmonized world soil database. FAO, Rome, Italy and IIASA, Laxenburg, Austria

    Google Scholar 

  • Fernández C, Vega JA (2016) Evaluation of RUSLE and PESERA models for predicting soil erosion losses in the first year after wildfire in NW Spain. Geoderma 273:64–72. https://doi.org/10.1016/j.geoderma.2016.03.016

    Article  Google Scholar 

  • Ghadiri H, Rose CW (1993) Water erosion processes and the enrichment of sorbed pesticides. Part 2. Enrichment under rainfall dominated erosion process. J Environ Manag 37:37–50

    Article  Google Scholar 

  • Harmon RS, Doe WW (2001) Landscape erosion and evolution modeling. Springer Science & Business Media, New York

  • Hudson N (1993) Field measurement of soil erosion and runoff. Food & Agriculture Org, Rome

    Google Scholar 

  • Imamoglu A, Dengiz O (2017) Determination of soil erosion risk using RUSLE model and soil organic carbon loss in Alaca catchment (Central Black Sea region, Turkey). Rend Lincei 28:11–23. https://doi.org/10.1007/s12210-016-0556-0

    Article  Google Scholar 

  • Jiang L, Yao Z, Liu Z et al (2015) Estimation of soil erosion in some sections of Lower Jinsha River based on RUSLE. Nat Hazards 76:1831–1847. https://doi.org/10.1007/s11069-014-1569-6

    Article  Google Scholar 

  • Kalman R (1967) Essai d’évaluation pour le pré-Rif du facteur couverture végétale de la formule de Wischmeier de calcul de l’érosion. Rapport Rabat 1–12

  • Kinnell P (2001) Slope length factor for applying the USLE-M to erosion in grid cells. Soil Tillage Res 58:11–17. https://doi.org/10.1016/S0167-1987(00)00179-3

    Article  Google Scholar 

  • Knisel WG (1980) CREAMS: a field scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems (USA). United States Dept Agric Conserv Res Rep

  • Lal R, Ahmadi M, Bajracharya RM (2000) Erosional impacts on soil properties and and corn yield on alfisols in central Ohio. Land Degrad Dev 11:575–585. https://doi.org/10.1002/1099-145X(200011/12)11:6%3C575::AID-LDR410%3E3.0.CO;2-N

    Article  Google Scholar 

  • Leopold LB (1951) Rainfall frequency: an aspect of climatic variation. Eos Trans Am Geophys Union 32:347–357

    Article  Google Scholar 

  • Lin CY, Lin WT, Chou WC (2002) Soil erosion prediction and sediment yield estimation: the Taiwan experience. Soil Tillage Res 68:143–152. https://doi.org/10.1016/S0167-1987(02)00114-9

    Article  Google Scholar 

  • Maeda EE, Pellikka PKE, Siljander M, Clark BJF (2010) Potential impacts of agricultural expansion and climate change on soil erosion in the Eastern Arc Mountains of Kenya. Geomorphology 123:279–289. https://doi.org/10.1016/j.geomorph.2010.07.019

    Article  Google Scholar 

  • Markose VJ, Jayappa KS (2016) Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS. Environ Monit Assess. https://doi.org/10.1007/s10661-016-5218-2

    Google Scholar 

  • Moore ID, Burch GJ (1986) Modelling erosion and deposition: topographic effects. Trans ASAE 29:1624 – 1630

    Article  Google Scholar 

  • Nearing M, Foster G, Lane L, Finkner S (1989) A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Trans ASAE 32:1587–1593

    Article  Google Scholar 

  • Neitsch S, Arnold J, Kiniry J, Williams J (2011) Soil & water assessment tool theoretical documentation version 2009. Texas Water Resources Institute, pp 1–647

  • Pham TG, Degener J, Kappas M (2018) Integrated universal soil loss equation (USLE) and geographical information system (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. Int Soil Water Conserv Res 6:99–110. https://doi.org/10.1016/j.iswcr.2018.01.001

    Article  Google Scholar 

  • Planning Ministry of the Environment and Spatial (2000) National report on the state of the environment

  • Remini B (2000) L’envasement des barrages. Bull Réseau Eros 20:165–171

    Google Scholar 

  • Renard K, Foster G, Weesies G et al (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In: Agriculture handbook, No. 70. US Government Printing Office, Washington, pp 404

    Google Scholar 

  • Roose É, Noni G De (2004) Recherches sur l ‘érosion hydrique en Afrique: revue et perspectives. Sci Chang planétaires/Sécheresse 15:121–129

    Google Scholar 

  • Ruhe RV, Scholtes WH (1956) Ages and development of soil landscapes in relation to climatic and vegetational changes in Iowa 1. Soil Sci Soc Am J 20:264–273

    Article  Google Scholar 

  • Souidi Z, Hamimed A, Donze F (2014) Cartographie du risque de dégradation des terres en région semi-aride: Cas des Monts de Beni Chougrane dans le Tell Occidental Algérien. Geo Eco Trop 38:85–102

    Google Scholar 

  • Tang J, Cheng XQ, Zhu B et al (2015a) Rainfall and tillage impacts on soil erosion of sloping cropland with subtropical monsoon climate—a case study in hilly purple soil area, China. J Mt Sci 12:134–144. https://doi.org/10.1007/s11629-014-3241-8

    Article  Google Scholar 

  • Tang Q, Xu Y, Bennett SJ, Li Y (2015b) Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China. Environ Earth Sci 73:1715–1724. https://doi.org/10.1007/s12665-014-3523-z

    Article  Google Scholar 

  • Tetford PE, Desloges JR, Nakassis D (2017) Modelling surface geomorphic processes using the RUSLE and specific stream power in a GIS framework, NE Peloponnese, Greece. Model Earth Syst Environ. https://doi.org/10.1007/s40808-017-0391-z

    Google Scholar 

  • Thomas J, Joseph S, Thrivikramji KP (2018) Estimation of soil erosion in a rain shadow river basin in the southern Western Ghats, India using RUSLE and transport limited sediment delivery function. Int Soil Water Conserv Res 6:111–122. https://doi.org/10.1016/j.iswcr.2017.12.001

    Article  Google Scholar 

  • Toubal AK, Achite M, Ouillon S, Dehni A (2018) Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria. Environ Monit Assess. https://doi.org/10.1007/s10661-018-6580-z

    Google Scholar 

  • Toumi S, Meddi M, Mahé G, Brou YT (2013) Cartographie de l’érosion dans le bassin versant de l’Oued Mina en Algérie par télédétection et SIG. Hydrol Sci J 58:1542–1558. https://doi.org/10.1080/02626667.2013.824088

    Article  Google Scholar 

  • Wang G, Wente S, Gertner GZ, Anderson A (2002) Improvement in mapping vegetation cover factor for the universal soil loss equation by geostatistical methods with Landsat Thematic Mapper images. Int J Remote Sens 23:3649–3667. https://doi.org/10.1080/01431160110114538

    Article  Google Scholar 

  • Wijesundara NC, Abeysingha NS, Dissanayake DMSLB (2018) GIS-based soil loss estimation using RUSLE model: a case of Kirindi Oya river basin, Sri Lanka. Model Earth Syst Environ. https://doi.org/10.1007/s40808-018-0419-z

    Google Scholar 

  • Williams JR (1975) Sediment routing for agricultural watersheds. JAWRA J Am Water Resour Assoc 11:965–974

    Article  Google Scholar 

  • Williams JR, Berndt HD (1977) Sediment yield prediction based on watershed hydrology. Trans ASAE 20:1100–1104

    Article  Google Scholar 

  • Williams JR, Nicks AD, Arnold JG (1985) Simulator for water resources in rural basins. J Hydraul Eng 111:970–986

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1965) Predicting rainfall erosion losses from cropland east of the Rocky Mountains [online]. In: Agricultural Handbook, No. 282. US Department of Agriculture - Agricultural Research Service, Brooksville, pp 47

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses - a guide to conservation planning. In: Agriculture Handbook No 537. U.S. Department of Agriculture, Washington, DC 

    Google Scholar 

  • Zhang X-C (2012) Cropping and tillage systems effects on soil erosion under climate change in Oklahoma. Soil Sci Soc Am J 76:1789. https://doi.org/10.2136/sssaj2012.0085

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Djoukbala.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djoukbala, O., Hasbaia, M., Benselama, O. et al. Comparison of the erosion prediction models from USLE, MUSLE and RUSLE in a Mediterranean watershed, case of Wadi Gazouana (N-W of Algeria). Model. Earth Syst. Environ. 5, 725–743 (2019). https://doi.org/10.1007/s40808-018-0562-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-018-0562-6

Keywords

Navigation