Skip to main content

Advertisement

Log in

Erosion risk assessment through morphometric indices for prioritisation of Arjuna watershed using ALOS-PALSAR DEM

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Pressure of growing population rates and unsustainable usage of resources have greatly affected the productivity of agricultural lands due to land degradation. In a developing country such as India, degradation of land happens mainly due to the action of fluvial resources. The morphometric analysis of the drainage basin and channel network gives a detailed understanding of the geo-hydrological behaviour of drainage basin and expresses the prevailing climate, geology, geomorphology, and structural antecedents of the catchment which is very decisive in identifying regions vulnerable to soil erosion. Advancement in Remote Sensing (DEM) products and GIS techniques has made the assessment of morphometric indices more accurate, effective and less time consuming. Therefore, in this study, to assess the vulnerability of soil erosion in Arjuna watershed of vaippar basin, morphometric indices-based prioritisation of 16 sub-watersheds have been carried out using high-resolution ALOS-PALSAR DEM with a spatial resolution of 12.5 m. The linear and shape parameters which are responsible for soil erodability are assigned ranking using Compound Factor (CF) technique to arrive at the prioritisation of sub-watersheds. Based on the CF values, sub-watershed are classified into three categories of priority as high (5–7), medium (7–9), and low (9–12), respectively. The sub-watersheds such as Kamba Ittu Malai, Arjuna Nadi, Mela Gopulapuram, and Kodikulam come under the high priority category, whereas Muvaraivenran, Thaniparai, Chittar River,Vadugapatti, Perumalswamiuchi, Ayan Karisalkulam, Kurukkamuttu malai, and Satpur R.F come under the medium priority category and the Ramachandrapuram, Arjunapuram, Kovil Aru, and Periyar River sub-watersheds come under the low priority category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal C (1998) Study of drainage pattern through aerial data in Naugarh area of Varanasi district, UP. J Indian Soc Remote Sens 26(4):169–175. https://doi.org/10.1007/BF02990795

    Google Scholar 

  • Ahmed S, Chandrashekarappa K, Raj S, Nischitha V, Kavitha G (2010) Evaluation of morphometric parameters derived from ASTER and SRTM DEM—a study on Bandihole sub-watershed basin in Karnataka. J Indian Soc Remote Sens 38(2):227–238. https://doi.org/10.1007/s12524-010-0029-3

    Google Scholar 

  • Altaf S, Meraj G, Romshoo SA (2014) Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed. Environ Monit Assess 186(12):8. https://doi.org/10.1007/s10661-014-4012-2391-412.

    Google Scholar 

  • Ameri AA, Pourghasemi HR, Cerda A (2018) Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: a comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models. Sci Total Environ 613–614:1385–1400. https://doi.org/10.1016/j.scitotenv.2017.09.210

    Google Scholar 

  • Ashraf MA, Issaka S (2017) Impact of soil erosion and degradation on water quality: a review. Ecol Landsc 1(1):1–11. https://doi.org/10.1080/24749508.2017.1301053

    Google Scholar 

  • Asode A, Sreenivasa A, Lakkundi T (2016) Quantitative morphometric analysis in the hard rock Hirehalla sub-basin, Bellary and Davanagere district, Karnataka, India Using RS and GIS. Arabian J Geosci 9:381. https://doi.org/10.1007/s12517-016-2414-x

    Google Scholar 

  • Astras T, Soulankellis N (1992) Contribution of digital image analysis techniques on Landsat-5 TM imageries for drainage delineation. A case study from the Olympus mountain, west Macedonia, Greece. In: Proceedings of the 18th annual Conference of the Remote Sensing Society, University of Dundee, pp 163–172

  • Avinash K, Jayappa KS, Deepika B (2011) Prioritisation of sub-basins based on geomorphology and morphometric analysis using remote sensing and geographical information system (GIS) techniques. Geocarto Int 26(7):569–592

    Google Scholar 

  • Balaselvakumar S, Kumaraswamy K, Srileka S, Jawahar Raj N (2000) Morphometric characteristics of Arjuna River Basin in Tamil Nadu—a qualitative approach. Deccan Geogr 38(1):31–40

    Google Scholar 

  • Balasubramani K, Saravanabavan V, Gomathi M, Kumaraswamy K (2014) Application of geospatial technologies inPreparation of Slope and Landuse Map forLand Degradation Assessment: a case study of Upper Arjuna Nadi Watershed. Managing Our Resources Perspectives and Planning. Bharti Publications, pp 31–39

  • Banerjee A, Singh P, Pratap K (2017) Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: an integrated GIS-based approach. Appl Water Sci 7(4):1807–1815. https://doi.org/10.1007/s13201-015-0354-3

    Google Scholar 

  • Bewket W, Teferi E (2009) Assessment of Soil Erosion Hazard and Prioritization for Treatment At The Watershed Level: Case Study in The Chemoga Watershed, Blue Nile Basin. Ethiopia Land Degrad Dev 20:609–622. https://doi.org/10.1002/ldr.944

    Google Scholar 

  • Bharatkumar L, Aslam M (2016) Prioritizing groundwater potential zones using morphometric analysis: a case study of Gulbarga watershed. IOSR J Appl Geol Geophys 4(3):78–84

    Google Scholar 

  • Bhattacharyya R, Ghosh BN, Mishra PK, Mandal B, Rao CS, Sarkar D et al (2015) Soil degradation in India: challenges and potential solutions. Sustainability 7:3528–3570

    Google Scholar 

  • Biswas R, Chakraborty S (2016) Watershed prioritization based on geo-morphometry and land use parameters – an approach to watershed development using remote sensing and GIS, Neora watershed, Darjeeling and Jalpaiguri districts, West Bengal, India. IOSR J Appl Geol Geophys 4(3):36–48. https://doi.org/10.9790/0990-0403013649

    Google Scholar 

  • Biswas S, Sudhakar S, Desai V (1999) Prioritisation of subwatersheds based on morphometric analysis of drainage basin: a remote sensing and gis approach. J Indian Soc Remote Sens 27:155. https://doi.org/10.1007/BF02991569

    Google Scholar 

  • Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C et al (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun. https://doi.org/10.1038/s41467-017-02142-7

    Google Scholar 

  • Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vision Graph Image Process 28(3):323–344. https://doi.org/10.1016/S0734-189X(84)80011-0

    Google Scholar 

  • Chauhan P, Chauniyal DD, Singh N, Tiwari RK (2016) Quantitative geo-morphometric and land cover-based micro-watershed prioritization in the Tons river basin of the lesser Himalaya. Environ Earth Sci 75(498):17. https://doi.org/10.1007/s12665-016-5342-x

    Google Scholar 

  • Choudary P, Nigam GK, Singh SK, Thakur S (2018) Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geol Ecol Landsc. https://doi.org/10.1080/24749508.2018.1452482

    Google Scholar 

  • Clarke J (1996) Morphometry from maps: essay in geomorphology. Elsevier Publ., Co., New York

    Google Scholar 

  • Cunha ER, Bacani VM (2016) Morphometric Characterization of a watershed THROUGH SRTM data and geoprocessing technique. J Geogr Inf Syst 8(2):238–247. https://doi.org/10.4236/jgis.2016.82021

    Google Scholar 

  • Das D (2014) Identification of erosion prone areas by morphometric analysis using GIS. J Inst Eng (India) 95(1):61–74. https://doi.org/10.1007/s40030-014-0069-8

    Google Scholar 

  • Das S, Patel PP, Sengupta S (2016) Evaluation of different digital elevation models for analyzing drainage morphometric parameters in a mountainous terrain: a case study of the Supin–Upper Tons Basin, Indian Himalayas. Springerplus. https://doi.org/10.1186/s40064-016-3207-0

    Google Scholar 

  • Ding L, Chen KL, Cheng SG, Wang X (2015) Water ecological carrying capacity of urban lakes in the context of rapid urbanization: a case study of East Lake in Wuhan. Phys Chem Earth Parts A/B/C 89–90:104–113. https://doi.org/10.1016/j.pce.2015.08.004

    Google Scholar 

  • Doornkamp J, King C (1971) Numerical analysis in geomorphology—an introduction. Macmillan and Co. Ltd, London. https://doi.org/10.1111/j.1745-7939.1973.tb00703.x

    Google Scholar 

  • Dutta D, Das S, Sharma J, Kudrat M, Manchanda M (1997) Prioritization of watersheds for perspective landuse planning using remote sensing and geographic information system. Ann Arid Zone 36(2):103–114

    Google Scholar 

  • Elsiad AA, Ramadan ME, Magdy A (2017) Quantitative evaluation of drainage basin characteristics using GIS based morphometric analysis: a case study of Wadi Sudr, Sinai, Egypt. Twentieth international water technology conference, IWTC20, Hurghada, pp 110–119

  • Farhan Y, Anaba O (2016) A remote sensing and GIS approach for prioritization of Wadi Shueib Mini-Watersheds (Central Jordan) based on morphometric and soil erosion susceptibility analysis. J Geogr Inf Syst 8:1–19. https://doi.org/10.4236/jgis.2016.81001

    Google Scholar 

  • Farhan Y, Elgaziri A, Elmaji I, Ali I (2016) Hypsometric analysis of Wadi Mujib-Wala watershed (Southern Jordan) using remote sensing and GIS techniques. Int J Geosci 7:158–176. https://doi.org/10.4236/ijg.2016.72013

    Google Scholar 

  • Filho CO, Rossetti DF (2012) Effectiveness of SRTM and ALOS-PALSAR data for identifying morphostructural lineaments in northeastern Brazil. Int J Remote Sens 33(4):1058–1077. https://doi.org/10.1080/01431161.2010.549852

    Google Scholar 

  • Forkuor G, Maathuis B (2012) Comparison of SRTM and ASTER derived digital elevation models over two regions in Ghana—Implications for Hydrological and Environmental Modeling. In: Piacentini T (ed) Studies on environmental and applied geomorphology, pp 219–240. https://doi.org/10.5772/28951

  • Gajbhiye S, Sharma SK, Meshram C (2014) Prioritization of watershed through sediment yield index using RS and GIS approach. Int J U-e-Service Sci Technol 7(6):47–60. https://doi.org/10.14257/ijunesst.2014.7.6.05

    Google Scholar 

  • Gajbhiye S, Mishra S, Pandey A (2015) Simplified sediment yield index model incorporating parameter CN. Arab J Geosci 8(4):1993–2004. https://doi.org/10.1007/s12517-014-1319-9

    Google Scholar 

  • Gashaw T, Tulu T, Argaw M (2018) Erosion risk assessment for prioritization of conservation measures in Geleda watershed, Blue Nile basin, Ethiopia. Environ Syst Res 6(1). https://doi.org/10.1186/s40068-016-0078-x

  • Genchi SA, Vitale AJ, Perillo GM, Piccolo MC (2016) Geomorphometric assessment of drainage systems in a semi-arid region of Argentina using geospatial tools and multivariate statistics. Earth Sci Inform. https://doi.org/10.1007/s12145-016-0258-2

    Google Scholar 

  • Gomiero T (2016) Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability 8:281

    Google Scholar 

  • Gottschalk LC (1964) Reservoir sedimentation. In: Chow VT (ed) Handbook of applied hydrology. McGraw Hill Book Company, New York

    Google Scholar 

  • Gravelius H (1914) Rivers. G.J. göschen Publishing, Berlin, p 179

    Google Scholar 

  • Gregory K (1966) Dry valley and the composition of the drainage net. J Hydrol 4:327–340. https://doi.org/10.1016/0022-1694(66)90096-5

    Google Scholar 

  • Gregory K, Walling D (1973) Drainage basin form and process: a geomorphological approach. Edward Arnold, London

    Google Scholar 

  • Grohmann C, Riccomini C, Alves (2007) SRTM-based morphotectonic analysis of the Poços de Caldas Alkaline Massif, southeastern Brazil. Comput Geosci 33:10–19. https://doi.org/10.1016/j.cageo.2006.05.002

    Google Scholar 

  • Hajam R, Hamid A, Bhat S (2013) Application of morphometric analysis for geo- hydrological studies using geo-spatial technology: a case study of Vishav Drainage Basin. Int Res J Geol Mining, 136–146. https://doi.org/10.4172/2157-7587.1000157

  • Harlin JM, Wijeyawickrema C (1985) Irrigation and groundwater depletion in Caddo county, Oklahoma. J Am Water Resour Assoc 21(1):15–22. https://doi.org/10.1111/j.1752-1688.1985.tb05346.x

    Google Scholar 

  • Horton R (1932) Drainage basin characteristics. Trans Am Geophys Union 13:350–361. https://doi.org/10.1029/TR013i001p00350

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. GSA Bull 56(3):275–370. https://doi.org/10.1130/0016-7606(1945)56%5B275:EDOSAT%5D2.0.CO;2

    Google Scholar 

  • Iqbal M, Sajjad H, Bhat FA (2013) Morphometric analysis of Shaliganga sub catchment, Kashmir valley, India using geographical information system. Int J Eng Trends Technol 4(1):10–21

    Google Scholar 

  • Jaiswal R, Ghosh N, Galkate R, Thomas T (2015) Multi criteria decision analysis (MCDA) for watershed Prioritization. International conference on water resources, coastal and ocean engineering. Aquatic Proc 4:1553–1560. https://doi.org/10.1016/j.aqpro.2015.02.201

    Google Scholar 

  • Javed A, Khanday MY, Ahmed R (2009) Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and GIS techniques. J Indian Soc Remote Sens 37:(261. https://doi.org/10.1007/s12524-009-0016-8

    Google Scholar 

  • Kadam AK, Jaweed TH, Umrikar BN, Hussain K, Sankhua RN (2017) Morphometric prioritization of semi-arid watershed for plant growth potential using GIS technique. Model Earth Syst Environ, 11. https://doi.org/10.1007/s40808-017-0386-9

  • Kaliraj S, Chandrasekar N, Magesh N (2015) Morphometric analysis of the River Thamirabarani sub-basin in Kanyakumari district, South west coast of Tamil Nadu, India, using remote sensing and GIS. Environ Earth Sci 73(11):7375–7401. https://doi.org/10.1007/s12665-014-3914-1

    Google Scholar 

  • Kannan R, Venkateswaran S, Prabhu MV, Sankar K (2018) Drainage morphometric analysis of the Nagavathi watershed, Cauvery river basin in Dharmapuri district, Tamil Nadu, India using SRTM data and GIS. Data Brief 19:2420–2426. https://doi.org/10.1016/j.dib.2018.07.016

    Google Scholar 

  • Khare D, Mondal A, Mishra PK, Kundu S, Meena PK (2014) Morphometric analysis for prioritization using remote sensing and GIS techniques in a hilly catchment in the state of Uttrakhand, India. Indian J Sci Tech 7(10):1650–1662

    Google Scholar 

  • Kinthada NR, Srivastava Y, Rao VV, Amminedu E, Murthy K (2005) Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis—remote sensing and GIS perspective. J Indian Soc Remote Sens 33(1):25–38. https://doi.org/10.1007/BF02989988

    Google Scholar 

  • Kiran VSS, Srivastava YK, Bankura WB (2012) Check Dam construction by prioritization of micro watershed, using morphometric analysis as a Perspective of remote sensing and GIS for Simlapal Block. Bonfring Int Ind Eng Manag Sci 2(1):20–31

    Google Scholar 

  • Kouli M, Soupios P, Vallianatos F (2009) Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environ Geol 57(3):483–497. https://doi.org/10.1007/s00254-008-1318-9

    Google Scholar 

  • Kumar Avinash KS, Jayappa B, Deepika (2011) Prioritization of sub-basins based on geomorphology and morphometricanalysis using remote sensing and geographic informationsystem (GIS) techniques. Geocarto Int 26(7):569–592. https://doi.org/10.1080/10106049.2011.606925

    Google Scholar 

  • Leopold L, Maddock T (1953) The hydraulic geometry of stream channels and some physiographic implications. USGS Professional paper, pp 1–57. https://doi.org/10.3133/pp252

  • Lin WT, Chou WC, Lin CY, Huang PH, Tsai JS (2006) Automated suitable drainage network extraction from digital elevation models in Taiwan’s upstream watersheds. Hydrol Process 20(2):289–306. https://doi.org/10.1002/hyp.5911

    Google Scholar 

  • Magesh N, Chandrasekar N (2014) GIS model-based morphometric evaluation of Tamiraparani subbasin, Tirunelveli district, Tamil Nadu, India. Arab J Geosci 7(1):131–141. https://doi.org/10.1007/s12517-012-0742-z

    Google Scholar 

  • Magesh NS, Jitheshlal KV, Chandrasekar N, Jini KV (2013) Geographical information system-based morphometric analysis of Bharathapuzha river basin, Kerala, India. Appl Water Sci 3:467–477. https://doi.org/10.1007/s13201-013-0095-0

    Google Scholar 

  • Manu M, Anirudhan S (2008) Drainage characteristics of Achankovil River basin, Kerala. J Geol Soc India 71(6):841–850

    Google Scholar 

  • Meshram SG, Sharma S (2017) Prioritization of watershed through morphometric parameters: a PCA-based approach. Appl Water Sci 7(3):1505–1519. https://doi.org/10.1007/s13201-015-0332-9

    Google Scholar 

  • Miller V (1953) A quantitative geomorphologic study of drainage basin characteristics in the clinch mountain area. Technical Report, Virginia and Tennessee Columbia University, Department of Geology. https://doi.org/10.1086/626413

  • Mondal T, Gupta S (2015) Evaluation of morphometric parameters of drainage networks derived from topographic map and digital elevation model using remote sensing and GIS. Int J Geomatics Geosci 5(4):655–664

    Google Scholar 

  • Montgomery RD, Dietrich EW (1988) where do channels begin? Nature 336(6196):232–234. https://doi.org/10.1038/336232a0

    Google Scholar 

  • Moore I, Grayson R, Ladson A (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3–30. https://doi.org/10.1002/hyp.3360050103

    Google Scholar 

  • Nag S (1998) Morphometric analysis using remote sensing techniques in the chaka sub-basin, purulia district, West Bengal. J Indian Soc Remote Sens 26(1–2):69–76. https://doi.org/10.1007/BF03007341

    Google Scholar 

  • Niipele J, Chen J (2019) The usefulness of alos-palsar dem data for drainage extraction in semi-arid environments in The Iishana sub-basin. J Hydrol Regional Stud 21:57–67. https://doi.org/10.1016/j.ejrh.2018.11.003

    Google Scholar 

  • Ozdemir H, Bird D (2009) Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point floods. Environ Geol 56:1405–1415. https://doi.org/10.1007/s00254-008-1235-y

    Google Scholar 

  • Ozulu İ, Gökgöz T (2018) Examining the stream threshold approaches used in hydrologic analysis. ISPRS Int J Geo-Inf 7(6):201. https://doi.org/10.3390/ijgi7060201

    Google Scholar 

  • Panagos P, Standardi G, Borrelli P, Lugato E, Montanarella L, Bosello F (2018) Cost of agricultural productivity loss due to soil erosion in the European Union: from direct cost evaluation approaches to the use of macroeconomic models. Land Degrad Dev. https://doi.org/10.1002/ldr.2879

    Google Scholar 

  • Pande CB, Moharir K (2017) GIS based quantitative morphometric analysis and its consequences: a case study from Shanur River Basin, Maharashtra India. Appl Water Sci 7(2):861–871. https://doi.org/10.1007/s13201-015-0298-7

    Google Scholar 

  • Panhalkar SS, Mali SP, Pawar CT (2012) Morphometric analysis and watershed development prioritization of hiranyakeshi basin in Maharashtra, India. Int J Environ Sci 3(1):525–534. https://doi.org/10.6088/ijes.2012030131052

    Google Scholar 

  • Pareta K, Pareta U (2011) Quantitative morphometric analysis of a watershed of Yamuna basin, India using ASTER (DEM) data and GIS. Int J Geomatics Geosci 2(1):248–269

    Google Scholar 

  • Patel DP, Gajjar CA, Srivastava PK (2013) Prioritization of Malesari mini-watersheds through morphometric analysis: a remote sensing and GIS perspective. Environ Earth Sci 69:2643–2656. https://doi.org/10.1007/s12665-012-2086-0

    Google Scholar 

  • Patton CP, Baker RV (1976) Morphometry and floods in small drainage basins basins subject to diverse hydrogeomorphic controls. Water Resour Res. https://doi.org/10.1029/WR012i005p00941

    Google Scholar 

  • Pimentel D, Burgess M (2013) Soil erosion threatens food production. Agriculture 3(3):443–463. https://doi.org/10.3390/agriculture3030443

    Google Scholar 

  • Prasannakumar V, Vijith H, Geetha N (2013) Terrain evaluation through the assessment of geomorphometric parameters using DEM and GIS: case study of two major sub-watersheds in Attapady, South India. Arab J Geosci 6(4):1141–1151. https://doi.org/10.1007/s12517-011-0408-2

    Google Scholar 

  • Rahaman SA, Ajeez SA, Aruchamy S, Jegankumar R (2015) Prioritization of Sub Watershed based on morphometric characteristics using fuzzy analytical hierarchy process and geographical information system—a study of Kallar watershed, Tamil Nadu. International conference on water resources, coastal and ocean. Aquatic Proc. 4:1322–1330. https://doi.org/10.1016/j.aqpro.2015.02.172

    Google Scholar 

  • Ratnam KN, Srivastava YK, Rao VV, Amminedu E, Murthy KSR (2005) Check dam positioning by prioritization micro-watersheds using SYI model and morphometric analysis – remote sensing and GIS perspective. J Indian Soc Remote Sens 33(1):25–38

    Google Scholar 

  • Reddy GPO, Kumar N, Sahu N, Singh SK (2018) Evaluation of automatic drainage extraction thresholds using ASTER GDEM and Cartosat-1 DEM: a case study from basaltic terrain of Central India. Egypt J Remote Sens Space Sci 21(1):95–104. https://doi.org/10.1016/j.ejrs.2017.04.001

    Google Scholar 

  • Rekha VB, George A, Rita M (2011) Morphometric Analysis and Micro-watershed Prioritization of Peruvanthanam Sub-watershed, the Manimala River Basin, Kerala, South India. Environ Res Eng Manag. https://doi.org/10.5755/j01.erem.57.3.472

    Google Scholar 

  • Scheidegger A (1965) The algebra of stream-order numbers. United States Geological Survey Professional Paper, pp 187–189

  • Scheidegger AE (1970) Theoretical geomorphology. George Allen and Unwin, London. https://doi.org/10.1007/978-3-662-01025-9

    Google Scholar 

  • Schumm SA (1956) Evolution of drainage systems and slopes in bad lands at Perth Amboy. Geol Soc Am 67(5):597–646. https://doi.org/10.1130/0016-7606(1956)67%5B597:EODSAS%5D2.0.CO;2

    Google Scholar 

  • Shaikh M, Birajdar F (2015) Analysis of watershed characteristics using remote sensing and GIS techniques. Int J Innovative Res Sci Eng Technol 4(4):1971–1976. https://doi.org/10.15680/IJIRSET.2015.0404023

    Google Scholar 

  • Shreve R (1967) Infinite topologically random channel networks. J Geol 75(2):178–186

    Google Scholar 

  • Singh S, Singh MC (1997) Morphometric analysis of Kanhar river basin. Nat Geogr J India 43:31–43

    Google Scholar 

  • Slaymaker O (2001) Geomorphic impacts of timber harvesting. Chin Sci Bull 46(S1):1–4

    Google Scholar 

  • Smith K (2001) Standards for grading texture of erosional topography. Am J Sci 248:655–668. https://doi.org/10.2475/ajs.248.9.655

    Google Scholar 

  • Soni S, Tripathi S, Maurya A (2013) GIS based morphometric characterization of mini watershed - rachhar nala of Anuppur district Madhya Pradesh. Int J Adv Technol Eng Res 3(3):32–38

    Google Scholar 

  • Sreedevi P, Subrahmanyam K, Ahmed S (2005) The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environ Geol 47:412–420. https://doi.org/10.1007/s00254-004-1166-1

    Google Scholar 

  • Sreedevi P, Owais S, Khan H, Ahmed S (2009) Morphometric analysis of a watershed of South India using SRTM data and GIS. J Geol Soc India 73(4):543–552. https://doi.org/10.1007/s12594-009-0038-4

    Google Scholar 

  • Strahler AN (1952) Dynamic basis of geomorphology. GSA Bull 63(9):923–938. https://doi.org/10.1130/0016-7606(1952)63%5b923:DBOG%5d2.0.CO;2

    Google Scholar 

  • Strahler A (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913–920. https://doi.org/10.1029/TR038i006p00913

    Google Scholar 

  • Strahler AN (1958) Quantitative geomorphology of drainage basins and channel networks. In: Chow VT (ed) Handbook of applied hydrology. McGraw Hill, New York, pp 439–476

    Google Scholar 

  • Strahler A (1964) Quantitative geomorphology of drainage basins and channel networks (vol 4). In: Chow V (ed) New York: McGraw Hill

    Google Scholar 

  • Subhatu A, Lemann T, Hurni K, Portner B, Kassawmar T, Zeleke G et al (2017) Deposition of eroded soil on terraced croplands in Minchet catchment, Ethiopian Highlands. Int Soil Water Conserv Res. 212–220

  • Suresh M, Sudhakar S, Tiwari K, Chowdary V (2004) Prioritization of watersheds using morphometric parameters and assessment of surface water potential using remote sensing. J Indian Soc Remote Sens 32(3):249–259. https://doi.org/10.1007/BF03030885

    Google Scholar 

  • Thakkar AK, Dhiman S (2007) Morphometric analysis and prioritization of miniwatersheds in Mohr Watershed, Gujarat using remote sensing and GIS techniques. J Indian Soc Remote Sens 35(4):321–329. https://doi.org/10.1007/BF02990787

    Google Scholar 

  • Thomas J, Prasannakumar V (2015) Comparison of basin morphometry derived from topographic maps, ASTER and SRTM DEMs: an example from Kerala, India. Geocarto Int 30(3):346–364. https://doi.org/10.1080/10106049.2014.955063

    Google Scholar 

  • Thomas J, Joseph S, Thrivikramji K, Abe G, Kannan N (2012) Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern Western Ghats, India. Environ Earth Sci 66(8):2353–2366. https://doi.org/10.1007/s12665-011-1457-2

    Google Scholar 

  • Vanwalleghem T, Gómez J, Amate JI, de Molina M, Vanderlinden K, Guzmán G et al (2017) Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene 17:13–29. https://doi.org/10.1016/j.ancene.2017.01.002

    Google Scholar 

  • Verstappen H (1983) Applied geomorphology: geomorphological surveys for environmental development. Elsevier, New York

    Google Scholar 

  • Vijith H, Satheesh R (2006) GIS based morphometric analysis of two major upland sub-watersheds of meenachil river in Kerala. J Indian Soc Remote Sens 34(181). https://doi.org/10.1007/BF02991823

  • Vittala SS, Govindaiah S, Gowda HH (2004) Morphometric analysis of sub-watersheds in the Pavagada area of Tumkur district, South India using remote sensing and GIS techniques. J Indian Soc Remote Sens 32(4):351–362. https://doi.org/10.1007/BF03030860

    Google Scholar 

  • Williams R, Fowler P (1969) A preliminary report on an empirical analysis of drainage network adjustment to precipitation input. J Hydrol 8:227–238

    Google Scholar 

  • Wilson JJ, Chandrasekar N, Magesh N (2012) Morphometric Analysis of major sub-watersheds in Aiyar & Karai Pottanar Basin, Central Tamil Nadu, India using remote sensing & GIS techniques. Bonfring Int J Ind Eng Manag Sci 2(1):08–15

    Google Scholar 

  • Yadav S, Singh S, Gupta M, Srivastava P (2014) Morphometric analysis of Upper Tons basin from Northern Foreland of Peninsular India using CARTOSAT satellite and GIS. Geocarto Int 29(8):895–914. https://doi.org/10.1080/10106049.2013.868043

    Google Scholar 

  • Yadav S, Dubey A, Szilard S, Singh S (2016) Prioritization of sub-watersheds based on earth observation data of agricultural dominated northern river basin of India. Geocarto Int 33(4):339–356. https://doi.org/10.1080/10106049.2016.1265592

    Google Scholar 

  • Yang M, Lee K (2001) Determination of probability distributions for Strahler stream lengths based on Poisson process and DEM. Hydrol Sci J 46(5):813824. https://doi.org/10.1080/02626660109492872

    Google Scholar 

  • Zwnnitz E (1932) Drainage pattern and their significance. J Geol 6:498–521

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous reviewers for their insightful remarks and critical suggestions that greatly helped in improving the quality of the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdul Rahaman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitheshnirmal, S., Thilagaraj, P., Rahaman, S.A. et al. Erosion risk assessment through morphometric indices for prioritisation of Arjuna watershed using ALOS-PALSAR DEM. Model. Earth Syst. Environ. 5, 907–924 (2019). https://doi.org/10.1007/s40808-019-00578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-019-00578-y

Keywords

Navigation