Skip to main content
Log in

Modality of Adaptive Neuro-Fuzzy Classifier for Acoustic Signal-Based Traffic Density State Estimation Employing Linguistic Hedges for Feature Selection

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Modality of adaptive neuro-fuzzy classifier (ANFC) for vehicular traffic density estimation using linguistic hedges (LH) and feature selection (FS) approach is proposed in this work. Cumulative vehicular acoustic signal is collected from roadside installed Omni-directional microphone followed by acoustic feature extraction using Mel frequency cepstral coefficients for varying combination of frame size and shift size. ANFC is modeled to classify traffic density states as low, medium, and heavy. Classification performance is further improved through modeling of ANFC with LH. Feature selection criteria are considered for varying combinations of frame size and shift, where linguistic hedges are employed for FS followed by ANFC to model traffic density states. We are getting better classification performance as compared to state of art literature for lower combinations of frame and shift size and even for consideration of single frame feature vector. Consideration of multiple contiguous frames will definitely increase the accuracy but with cost of computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li, C., Shimamoto, S.: A real time traffic light control scheme for reducing vehicles CO2 emissions. In: Proceedings of the 8th Annual IEEE Consumer Communications and Networking Conference—Emerging and Innovative Consumer Technologies and Applications, 855–859 (2011). doi:10.1109/CCNC.2011.5766627

  2. Valcarce, R., Mosquera, C., Gonzalez, R.: Estimation of road vehicle speed using two omnidirectional microphones A maximum likelihood approach. EURASIP J. Adv. Signal Process. 2004, 1059–1077 (2004). doi:10.1155/S1110865704311133

    Article  MATH  Google Scholar 

  3. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and soft computing. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  4. Jang, J.S.R.: ANFIS: adaptive network based fuzzy inference systems. IEEE Trans. Syst. Man Cybernet. 23(3), 665–685 (1993)

    Article  Google Scholar 

  5. Kasabov, N.K., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10(2), 144–154 (2002)

    Article  Google Scholar 

  6. Kasabov, N.K.: Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Trans. Syst. Man Cybernet B 31(6), 902–918 (2001)

    Article  Google Scholar 

  7. Hsu, W.: Motor imagery electroencephalogram analysis using adaptive neural-fuzzy classification. Int. J. Fuzzy Syst. 16(1), 111–120 (2014)

    Google Scholar 

  8. Lin, C., Kuo, S., Peng, P.: Multiple functional neural fuzzy networks fusion using fuzzy integral. Int. J. Fuzzy Syst. 14(3), 380–391 (2012)

    Google Scholar 

  9. Chatterjee, A., Siarry, P.: A PSO-aided neuro-fuzzy classifier employing linguistic hedge concepts. Expert Syst. Appl. 33(4), 1097–1109 (2007)

    Article  Google Scholar 

  10. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996)

    Article  MathSciNet  Google Scholar 

  11. Chakraborty, D., Pal, N.R.: A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Trans. Neural Networks 15(1), 110–123 (2004)

    Article  Google Scholar 

  12. Mitra, S., De, R.K., Pal, S.K.: Knowledge-based fuzzy MLP for classification and rule generation. IEEE Trans. Neural Networks 8(6), 1338–1350 (1997)

    Article  Google Scholar 

  13. Cetisli, B.: Development of an adaptive neuro-fuzzy classifier using linguistic hedges: part 1. Expert Syst. Appl. (2010). doi:10.1016/j.eswa.2010.02.108

    Google Scholar 

  14. Theodoridis, S., Kotroumbas, K.: Pattern Recognition. Academic Press, San Diego (1999)

    Google Scholar 

  15. Lin, L., Yeh, Y., Chu, T.: Feature selection algorithm for ecg signals and its application on heartbeat case determining. Int. J. Fuzzy Syst. 16(4), 483 (2014)

    Google Scholar 

  16. Liu, H.: Evolving feature selection. IEEE Intell. Syst. 20, 64–76 (2005)

    Article  Google Scholar 

  17. Cord, A., Ambroise, C., Cocquerez, J.P.: Feature selection in robust clustering based on Laplace mixture. Pattern Recogn. Lett. 27, 627–635 (2006)

    Article  Google Scholar 

  18. Huang, C., Chang, B., Cheng, D., Chang, C.: Feature selection and parameter optimization of a fuzzy-based stock selection model using genetic algorithms. Int. J. Fuzzy Syst. 14(1), 65–75 (2012)

    MathSciNet  Google Scholar 

  19. Kwak, N., Choi, C.C.H.: Input feature selection for classification problems. IEEE Trans. Neural Netw. 13(1), 143–159 (2002)

    Article  Google Scholar 

  20. Sindhwani, V., Rakshit, S.: Feature selection in MLPs and SVMs based on maximum output information. IEEE Trans. Neural Netw. 15(4), 937–948 (2004)

    Article  Google Scholar 

  21. Cetisli, B., Barkana, A.: Speeding up the scaled conjugate gradient algorithm and its application in neuro-fuzzy classifier training. Soft. Comput. 14, 365–378 (2010). doi:10.1007/s00500-009-0410

    Article  MATH  Google Scholar 

  22. Sandberg, U.: Tyre/road noise-myths and realities. In: Proceedings of the International Congress and Exhibition on Noise Control Engineering, Hague (2001)

  23. Sandberg, U., Ejsmont, A.J.: Tyre/Road Noise Reference Book. Infomex, Kisa (2002)

    Google Scholar 

  24. Road Directorate-Ministry of Transport. Noise Reducing Pavement. Road Directorate, Danish Road Institute Tech Report 141 (2005)

  25. Graf, R.A.G., Kuo, C.Y., Dowling, A.P., Graham, W.R.: On the horn effect of a tyre/road interface-Part I: experiment and computation. J. Sound Vib. 256(3), 417–431 (2002). doi:10.1006/jsvi.2001.4238

    Article  Google Scholar 

  26. Kuo, C.Y., Graf, R.A.G., Dowling, A.P., Graham, W.R.: On the horn effect of a tyre/road interface-Part II: asymptotic theories. J. Sound Vib. 256(3), 433–445 (2002). doi:10.1006/jsvi.2001.4217

    Article  Google Scholar 

  27. Amman, S.A., Das, M.: An efficient technique for modeling and synthesis of automotive engine sounds. IEEE Trans. Ind. Electron. 48(1), 225–234 (2001). doi:10.1109/41.904583

    Article  Google Scholar 

  28. Cevher, V., Chellappa, R., McCllelan, J.H.: Vehicle speed estimation using acoustic wave patterns. IEEE Trans. Signal Process. 57(1), 30–47 (2009). doi:10.1109/TSP.2008.2005750

    Article  MathSciNet  Google Scholar 

  29. Lilly, J.G.: Engine exhaust noise control. Available from Internet: http://www.ashraeregion7.org (2005)

  30. Sarigul-Klijn, N., Dietz, D., Karnopp, D., Dummer, J.: A Computational Aeroacoustic Model for Near and Far Field Vehicle Noise Predictions. The American Institute of Aeronautics and Astronautics, New York (2001)

    Google Scholar 

  31. Kato, J.: An attempt to acquire traffic density by using road traffic sound. In: Proceedings of the 2005 International Conference on Active Media Technology, pp. 353–358 (2005). doi: 10.1109/AMT.2005.1505370

  32. Sen, R., Siriah, P., Raman, B.: Roadsoundsense: acoustic sensing based road congestion monitoring in developing regions. In: IEEE SECON (2011)

  33. Tyagi, V., Kalyanaraman, S., Krishnapuram, R.: Vehicular traffic density state estimation based on cumulative road acoustics. IEEE Trans. Intell. Transp. Syst. 13(3), 1156–1166 (2012). doi:10.1109/TITS.2012.2190509

    Article  Google Scholar 

  34. Nakagawa, S., Longbiao, W., Ohtsuka, S.: Speaker identification and verification by combining MFCC and phase information. IEEE Transaction on Audio, Speech, and Language Processing, vol. 20 (4) (2012)

  35. Cetisli, B.: The effect of linguistic hedges on feature selection: part 2. Expert Syst. Appl. (2010). doi:10.1016/j.eswa.2010.02.115

    Google Scholar 

  36. Sen R., Raman B., Sharma P.: Horn-ok-please. In: Mobisys (2010)

  37. Borkar, P., Malik, L., Sarode, M.: Acoustic Signal based Traffic Density State Estimation using Adaptive Neuro-Fuzzy Classifier. WSEAS Trans. Signal Process. 10, 51–64 (2014)

    Google Scholar 

  38. Yang, W., Wang, X., Wang, J.: Counted linguistic variable in decision-making. Int. J. Fuzzy Syst. 16(2), 196–203 (2014)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of GHRCE and GHR Labs & Research center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Borkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borkar, P., Sarode, M.V. & Malik, L.G. Modality of Adaptive Neuro-Fuzzy Classifier for Acoustic Signal-Based Traffic Density State Estimation Employing Linguistic Hedges for Feature Selection. Int. J. Fuzzy Syst. 18, 379–394 (2016). https://doi.org/10.1007/s40815-015-0069-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0069-5

Keywords

Navigation