Skip to main content
Log in

Robust Sensor Fault-Tolerant Control of Induction Motor Drive

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper presents an active fuzzy fault-tolerant control (FTC) strategy for induction motor that ensures the performances of the field-oriented control (FOC). In the proposed approach, a robust controller is synthesized in order to compensate for both the resistance variation, the load torque disturbance, and the sensor fault. The physical model of induction motor is approximated by the Takagi–Sugeno (T–S) fuzzy technique in the synchronous d-q rotating frame. Fuzzy descriptor observer is introduced to estimate simultaneously the system state and the sensor faults. A robust feedback state tracking control is proposed to guarantee the control performances by minimizing the effect of the load torque and the uncertainties. The proposed controller is based on a T–S reference model in which a desired trajectory has been specified. The performances of the trajectory tracking are analyzed using the Lyapunov theory and the \(L_2\) optimization. Observer and controller gains are obtained by solving a set of LMIs constraint. To highlight the effectiveness of the proposed control simulation, results are introduced for a 1.5 KW induction motor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Blaschke, F.: The principle of field orientation applied to the transvector closed-loop control system for rotating fied machines. Seimens Rev. 34(5), 217–220 (1972)

    Google Scholar 

  2. Gouichiche, A., Boucherit, M.S., Safa, A., Messelem, Y.: Sensorless sliding mode vector control of induction motor drives. Int. J. Power Electron. Drive Syst. 2(3), 277–284 (2012)

    Google Scholar 

  3. Ichalal, D., Marx, B., Maquin, D., Ragot, J.: New fault tolerant control strategy for nonlinear systems with multiple model approach. In: Conference on Control and Fault-Tolerant Systems, pp. 606–611, France (2010)

  4. Noura, H., Sauter, D., Hamelin, F., Theilliol, D.: Fault-tolerant control in dynamics systems: application to a winding machine. IEEE Control Syst. Mag. 20(1), 33–49 (2000)

    Article  Google Scholar 

  5. Gertler, J.J.: Analytical Redundancy Methods in Fault Detection and Isolation— A Survey and Synthesis. In: Proceedings of IFAC Safeprocess Conference, 1, pp. 9–22, Baden-Baden (1991)

  6. Chen, J., Patton, R.J., Zhang, H.: Design of unknown input observers and robust fault detection fillters. Int. J. Control 63(1), 85–105 (1996)

    Article  MATH  Google Scholar 

  7. Sun, S., Wang, S., Wu, B.: Design of Luenberger robust fault detection observer. J. Zhejiang Univ. (Eng. Sci.) 38(6), 708–711 (2004)

    Google Scholar 

  8. Bouarrar, T., Marx, B., Maquin, D., Ragot, J.: Fault tolerant tracking control for continuous Takagi-Sugeno systems with time varying faults. In: 19th Mediterranean Conference on Control and Automation, pp. 1106–1111, Greece (2011)

  9. Jiang, J.: Design of reconfigurable control systems using eigenstructure assignments. Int. J. Control 59(2), 1763–1781 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, Z., Antasklis, P.J.: Stability of the pseudo-inverse method for reconfigurable control systems. Int. J. Control 53, 717–729 (1991)

    Article  MathSciNet  Google Scholar 

  11. Yue, G.H., Xiao-Ni, Z.: Realable \(H_\infty\) dynamic output feedback synthesis for linear systems. American Control Conference, 9, pp. 5546–5551 (2009)

  12. Zhou, K., Khargonekar, P.P.: Robust stabilization of linear systems with norm-bounded time-varying uncertainty. Syst. Control Lett. 10(1), 17–20 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tanaka, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man Cyber. 155(1), 116–132 (1985)

    MATH  Google Scholar 

  14. Xie, X., Yue, D., Zhang, H., Xue, Y.: Control synthesis of discrete-time T-S fuzzy systems via a multi-instant homogenous polynomial approach. IEEE Trans. Cyber (2015). doi:10.1109/TCYB.2015.2411336

  15. Xie, X.-P., Liu, Z.-W., Zhu, X.-L.: An efficient approach for reducing the conservatism of LMI-based stability conditions for continuous-time T-S fuzzy systems. Fuzzy Sets Syst. 263(1), 71–81 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kairui, C., Gao, X.Z., Lam, H.K.: A new relaxed stability condition for Takagi-Sugeno fuzzy control systems using quadratic fuzzy Lyapunov functions and staircase membership functions. Int. J. Fuzzy Syst. 16(3), 327–337 (2014)

    MathSciNet  Google Scholar 

  17. Micheal, K., Eugenio, B.C., Volter, J.S.L., Louis, F.P.S.: Fuzzy dynamic output feedback control throught nonlinear Takagi-Sugeno models. Fuzzy sets Syst. 263, 92–111 (2015)

    Article  Google Scholar 

  18. Chang, W.-J., Tsai, Y.-S., Ku, C.-C.: Fuzzy fault tolerant control via Takagi-Sugeno fuzzy models for nonlinear systems with multiplicative noises. Int. J. Fuzzy Syst. 16(3), 338–349 (2014)

    MathSciNet  Google Scholar 

  19. Hamdi, H., Rodrigues, M., Mechmeche, C., Benhadj, B.N.: Observer based fault tolerant control for Takagi-Sugeno nonlinear descriptor systems. Int. Conf. Control Eng. Inf. Technol. 1, 52–57 (2013)

    Google Scholar 

  20. Chamsedine, A., Theillol, D., Zhang, Y.M., Join, C., Rabbath, C.: A active fault tolerant control system design with trajectory replaning against actuator faults and saturation: application to a quadratic unmanned arial vehicle. Int. J. Adapt. Control Signal Process. 29, 1–23 (2015)

    Article  Google Scholar 

  21. Badihi, H., Youmin, Z., Hong, H.: Fuzzy gain—sheduled active fault tolerant control of a wind turbine. J. Frinkl. Inst. 351, 3677–3706 (2014)

    Article  MATH  Google Scholar 

  22. Shaker, M.S., Patton, R.J.: Wind tubine power maximisation based on adaptive sensor fault sliding mode control. In: Proceeding of the 20th Mediterranean Conference on Control and Automation, Barcelona, 3–6 July, pp. 1183–1188

  23. Xiao, B., Qinglei, H., Youmin, Z.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control Syst. Technol. 20(6), 1605–1612 (2012)

    Article  Google Scholar 

  24. Chadli, M., Aouaouda, S., Karimi, H.R., Shi, P.: Robust fault tolerant tracking controller design for a VTOL aircraft. J. Frankl. Inst. 350, 2627–2645 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bouarar, T., Marx, B., Maquin, D., Ragot, J.: Fault-tolerant control design for uncertain Takagi-Sugeno systems by trajectory tracking: a descriptor approach. Control Theory Appl. IET 7(14), 1793–1805 (2013)

    Article  MathSciNet  Google Scholar 

  26. Aouaouda, S., Chadli, M., Khadir, M.T., Bouarar, T.: Robust fault tolerant tracking controller design for unknown inputs T-S models with unmeasurable premise variables. J. Process Control 22(5), 861–872 (2012)

    Article  Google Scholar 

  27. Oudghiri, M., Chadli, M., El Hajjaji, A.: Robust observer-based fault-tolerant control for vehicle lateral dynamics. Int. J. Veh. Des. 48(3), 173–189 (2008)

    Article  Google Scholar 

  28. Shaker, M.S., Patton, R.J.: Active sensor fault tolernat output feedback tracking control for wind turbine systems via T-S model. Eng. Appl. Artif. Intell. 34, 1–12 (2014)

    Article  Google Scholar 

  29. Kamel, E., Aitouche, A.: Robust fault tolerant control of DFIG wind energy systems with unknown inputs. Renew. Energy 56, 2–15 (2013)

    Article  Google Scholar 

  30. Aouaouda, S., Chadli, M., Cocquempot, V., Khadir, M.T.: Multi-objective \(H_ - /H_\infty\) fault detection observer design for Takagi-Sugeno fuzzy systems with unmesurables premise variables: descriptor approach. Int. J. Adapt. Control Signal Process. 27(12), 1031–1047 (2012)

    Article  MATH  Google Scholar 

  31. Bouattour, M., Chadli, M., Chaabane, M., El Hajjaji, A.: Design of robust fault detection observer for Takagi-Sugeno models using the descriptor approach. Int. J. Control Autom. Syst. 9(5), 973–979 (2011)

    Article  Google Scholar 

  32. Aouaouda, S., Chadli, M., Karimi, H.-R.: Robust static output-feedback controller design against sensor failure for vehicle dynamics. J. Control Theory Appl. IET 8(9), 728–737 (2014)

    Article  MathSciNet  Google Scholar 

  33. Ghorbel, H., El Hajjaji, A., Souissi, M., Chaabane, M.: Robust static output-feedback controller design against sensor failure for vehicle dynamics. J. Circuits Syst. Signal Process. 33, 1763–1781 (2014)

    Article  Google Scholar 

  34. Campos-Delgado, D.U., Espinoza-Trejo, D.R., Palacios, E.: Fault tolerant control in variable speed drives: a survey. IET Electr. Power Appl. 2(2), 121–134 (2008)

    Article  Google Scholar 

  35. Djeghali, N., Ghanes, M., Djennoune, S., Parbot, J.P., Tajdine, M.: Fault Tolerant Control For Induction Motors Using Sliding Mode Observers. International Workshop on variable structure systems, pp. 190–196, Mexico (2010)

  36. Djeghali, N., Ghanes, M., Djennoune, S., Parbot, J.P.: Sensor fault tolerant control for induction motors. Int. J. Control Autom. Syst. 11(3), 563–576 (2013)

    Article  Google Scholar 

  37. Tabbache, B., Rizoug, N., Benbouzid, M., Kheloui, A.: A control regonfuguration strategy for post-sensor FTC in induction motor-based EVs. IEEE Trans. Veh. Technol. 62(3), 965–971 (2013)

    Article  Google Scholar 

  38. Mendes, A.M.S.: Fault-tolerant control operating strategies applied to three-phase induction-motors drives. IEEE Trans. Ind. Electron. 53(6), 1807–1817 (2006)

    Article  Google Scholar 

  39. Boniventoa, C., Isidoria, A., Marconia, L., Paolia, A.: Implicit fault-tolerant control: application to induction motors. Automatica 40(3), 355–371 (2004)

    Article  MathSciNet  Google Scholar 

  40. Benzoubid, M.E., Diallo, D., Zeraoulia, M.: Advenced fault tolerant control of induction motor drive for EV/HEV tracion application: from conventional to modern and intelligent control techniques. IEEE Trans. Veh. Technol. 56(2), 519–528 (2007)

    Article  Google Scholar 

  41. Allouche, M., Chaabane, M., Souissi, M., Mehdi, D., Tadeo, F.: State feedback tracking control for indirect fieled-oriented induction motor using Fuzzy approach. Int. J. Autom. Comput. 10, 99–110 (2013)

    Article  Google Scholar 

  42. Guerra, T., Kruszewski, A., Vermeiren, L., Tirmant, H.: Conditions of output stabilization for non linear models in the Takagi-Sugeno form. Fuzzy Sets Syst. 157(9), 1248–1259 (2006)

    Article  MATH  Google Scholar 

  43. Li, H., Yin, S., Pan, Y., Lam, H.-K.: Model reduction for interval type-2 Takagi Sugeno fuzzy systems. Automatica 61, 308–314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hossein, H., Jafar, Z.: Interval Type-2 fuzzy logic controller design for the speed control of DC motors. J. Syst. Sci. Control Eng. 3(1), 266–273 (2015)

    Article  MathSciNet  Google Scholar 

  45. Tao, Z., Jian, X.: State feedback control of interval type-2 Takagi-Sugeno fuzzy systems via interval type-2 regional switching fuzzy controllers. Int. J. Syst. Sci. 46(15), 2756–2769 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Ben Zina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Zina, H., Allouche, M., Souissi, M. et al. Robust Sensor Fault-Tolerant Control of Induction Motor Drive. Int. J. Fuzzy Syst. 19, 155–166 (2017). https://doi.org/10.1007/s40815-016-0148-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0148-2

Keywords

Navigation