Skip to main content
Log in

LMI Relaxations for Quadratic Stabilization of Guaranteed Cost Control of T–S Fuzzy Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Less conservative condition is provided in this paper for quadratic stabilization of guaranteed cost control (GCC) of Takagi–Sugeno fuzzy systems with parallel distributed compensation (PDC). To derive the condition, firstly a parameter-dependent linear matrix inequality (PD-LMI) is established to find quadratically stable PDC controller gains of GCC. Secondly, by applying Pólya’s theorem, evaluation of the PD-LMI is transformed into an equivalent problem of evaluation of a sequence of LMI relaxations. Different from other existing conditions, the LMI relaxations are sufficient and asymptotically reach necessity for evaluating the PD-LMI as a related scalar parameter, d, increases. The resulting guaranteed costs of PDC controllers are non-increasing with respect to the increase in the parameter d and converge to the global optimal value under quadratic stability at the limiting case. In addition, for input-affine nonlinear systems, the proposed condition is extended with the consideration of modeling errors, which helps to reduce the computational complexity of the LMI relaxations. Finally, simulations of two examples demonstrate the efficiency and feasibility of the proposed condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Babuka, R.: Fuzzy Modeling for Control. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  2. Boyd, S.P., El, G.L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, Philadelphia (1994)

    Book  MATH  Google Scholar 

  3. Chen, B., Liu, X.: Fuzzy guaranteed cost control for nonlinear systems with time-varying delay. IEEE Trans. Fuzzy Syst. 13(2), 238–249 (2005)

    Article  Google Scholar 

  4. Chen, B., Liu, X., Tong, S., et al.: Guaranteed cost control of T–S fuzzy systems with state and input delays. Fuzzy Set Syst. 158(20), 2251–2267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fang, C.H., Liu, Y.S., Kau, S.W., et al.: A new LMI-based approach to relaxed quadratic stabilization of TS fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(3), 386–397 (2006)

    Article  Google Scholar 

  6. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)

    Article  Google Scholar 

  7. Guan, X.P., Chen, C.L.: Delay-dependent guaranteed cost control for TS fuzzy systems with time delays. IEEE Trans. Fuzzy Syst. 12(2), 236–249 (2004)

    Article  MATH  Google Scholar 

  8. Han, D., Shi, L.: Guaranteed cost control of input-affine nonlinear systems via partition of unity method. Automatica 49(2), 660–666 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jadbabaie, A., Abdallah, C.T., Jamshidi, M., et al.: Guaranteed-cost control of the nonlinear benchmark problem using model-based fuzzy systems. IEEE Intl. Conf. Contr. 2, 792–796 (1998)

    Google Scholar 

  10. Khalil, H.K., Grizzle, J.W.: Nonlinear Syst. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  11. Kim, E., Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Syst. 8(5), 523–534 (2000)

    Article  Google Scholar 

  12. Kruszewski, A., Sala, A., Guerra, T.M., et al.: A triangulation approach to asymptotically exact conditions for fuzzy summations. IEEE Trans. Fuzzy Syst. 17(5), 985–994 (2009)

    Article  Google Scholar 

  13. Lee, D.H., Park, J.B., Joo, Y.H.: A new fuzzy Lyapunov function for relaxed stability condition of continuous-time TakagiSugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 19(4), 785–791 (2011)

    Article  Google Scholar 

  14. Li, Y.X., Yang, G.H.: Fuzzy adaptive output feedback fault-tolerant tracking control of a class of uncertain nonlinear systems with nonaffine nonlinear faults. IEEE Trans. Fuzzy Syst. 24(1), 223–234 (2016)

    Article  Google Scholar 

  15. Li, Y.X., Yang, G.H.: Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems with actuator faults and unknown dead zones. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–12 (2016)

    Google Scholar 

  16. Liu, X.D., Zhang, Q.L.: New approaches to \(H_{\infty }\) controller designs based on fuzzy observers for TS fuzzy systems via LMI. Automatica 39(9), 1571–1582 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Loera, J.A., Santos, F.: An effective version of Pólya’s theorem on positive definite forms. J. Pure Appl. Algebra 108(3), 231–240 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: 2004 IEEE International Symposium on Computer Aided Control Systems Design, IEEE, pp: 284–289 (2004)

  19. Montagner, V.F., Oliveira, R.C.L.F., Peres, P.L.D.: Convergent LMI relaxations for quadratic stabilizability and control of Takagi–Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 863–873 (2009)

    Article  Google Scholar 

  20. Mosek APS, The MOSEK optimization software, http://www.mosek.com, 54 (2010)

  21. Mrquez, R., Guerra, T.M., Bernal, M. et al.: Asymptotically necessary and sufficient conditions for Takagi-Sugeno models using generalized non-quadratic parameter-dependent controller design. Fuzzy Set Syst. 306, 46–62 (2015)

  22. Narimani, M., Lam, H.K.: Relaxed LMI-based stability conditions for Takagi-Sugeno fuzzy control systems using regional-membership-function-shape-dependent analysis approach. IEEE Trans. Fuzzy Syst. 17(5), 1221–1228 (2009)

    Article  Google Scholar 

  23. de Oliveira, M.C., Skelton, R.E.: Stability Tests for Constrained Linear Systems. Perspectives in Robust Control. Springer, London (2001)

    Google Scholar 

  24. Powers, V., Reznick, B.: A new bound for Pólya’s theorem with applications to polynomials positive on polyhedra. J. Pure Appl. Algebra 164(1), 221–229 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sala, A.: On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems. Annu. Rev. Control 33(1), 48–58 (2009)

    Article  Google Scholar 

  26. Sala, A., Ariño, C.: Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya’s theorem. Fuzzy Set Syst. 158(24), 2671–2686 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)

    Article  MATH  Google Scholar 

  28. Tanaka, K., Ikeda, T., Wang, H.: Design of fuzzy control systems based on relaxed LMI stability conditions. IEEE Decis. Contr. Proc. 1, 598–603 (1996)

    Article  Google Scholar 

  29. Tanaka, K., Taniguchi, T., Wang, H.O.: Fuzzy control based on quadratic performance function-a linear matrix inequality approach. IEEE Decis. Contr. Proc. 3, 2914–2919 (1998)

    Google Scholar 

  30. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2004)

    Google Scholar 

  31. Teixeira, M., Assunção, E., Avellar, R.G.: On relaxed LMI-based designs for fuzzy regulators and fuzzy observers. IEEE Trans. Fuzzy Syst. 11(5), 613–623 (2003)

    Article  Google Scholar 

  32. Tuan, H.D., Apkarian, P., Narikiyo, T., et al.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)

    Article  Google Scholar 

  33. Wang, Z.P., Wu, H.N.: Finite dimensional guaranteed cost sampled-data fuzzy control for a class of nonlinear distributed parameter systems. Inf. Sci. 327, 21–39 (2016)

    Article  MathSciNet  Google Scholar 

  34. Wang, Z.P. Wu, H.N.: Fuzzy impulsive control for uncertain nonlinear systems with guaranteed cost. Fuzzy Set Syst. 302, 143–162 (2015)

  35. Wu, H.N., Zhu, H.Y., Wang, J.W.: Fuzzy control for a class of nonlinear coupled ODE-PDE systems with input constraint. IEEE Trans. Fuzzy Syst. 23(3), 593–604 (2015)

    Article  Google Scholar 

  36. Xie, X., Yue, D., Ma, T., et al.: Further studies on control synthesis of discrete-time TS fuzzy systems via augmented multi-indexed matrix approach. IEEE Trans. Cybern. 44(12), 2784–2791 (2014)

    Article  Google Scholar 

  37. Xie, X., Yue, D., Zhang, H., et al.: Control synthesis of discrete-time TS fuzzy systems via a multi-instant homogenous polynomial approach. IEEE Trans. Cybern. 46(3), 630–640 (2016)

    Article  Google Scholar 

  38. Yin, P., Yu, L., Zheng, K.: TS model-based non-fragile guaranteed cost fuzzy control for nonlinear time-delay systems. Control Theory Appl. 1, 016 (2008)

    Article  Google Scholar 

  39. Ying, H.: General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators. IEEE Trans. Fuzzy Syst. 6(4), 582–587 (1998)

    Article  Google Scholar 

  40. Zhang, H., Xie, X.: Relaxed stability conditions for continuous-time T-S fuzzy-control systems via augmented multi-indexed matrix approach. IEEE Trans. Fuzzy Syst. 19(3), 478–492 (2011)

    Article  Google Scholar 

  41. Zhao, Y., Zhang, C., Gao, H.: A new approach to guaranteed cost control of TS fuzzy dynamic systems with interval parameter uncertainties. IEEE Trans. Syst. Man Cybern B 39(6), 1516–1527 (2009)

    Article  Google Scholar 

  42. Zhao, Q., Hautamaki, V., Frnti, P.: Knee point detection in BIC for detecting the number of clusters. In: International Conference on Advanced Concepts for Intelligent Vision Systems. Springer Berlin Heidelberg, pp. 664–673 (2008)

  43. Zou, T., Yu, H.: Asymptotically necessary and sufficient stability conditions for discrete-time Takagi-Sugeno model: extended applications of Polya’s theorem and homogeneous polynomials. J. Frankl. Inst. 351(2), 922–940 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is partly supported by the National Science Foundation of China (61473183, 61521063, U1509211), Program of Shanghai Subject Chief Scientist (14XD1402400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, B., Cai, Y. & Zhang, W. LMI Relaxations for Quadratic Stabilization of Guaranteed Cost Control of T–S Fuzzy Systems. Int. J. Fuzzy Syst. 19, 1392–1405 (2017). https://doi.org/10.1007/s40815-016-0268-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0268-8

Keywords

Navigation