Skip to main content

Advertisement

Log in

Robust Fuzzy Filter Design for Nonlinear Parabolic Partial Differential Systems with Continuous Wiener Noise and Discontinuous Poisson Noise

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper addresses a robust \(H_{\infty }\) fuzzy filter design problem for nonlinear stochastic partial differential systems (NSPDSs) with continuous random fluctuation, discontinuous Poisson jumping noise, random external disturbance and measurement noise in the spatiotemporal domain. For NSPDSs, the robust \(H_{\infty }\) filter design problem through a measurement output needs to solve a complex second-order Hamilton Jacobi integral inequality. In order to simplify the design procedure, a fuzzy stochastic partial differential system based on a fuzzy interpolation approach is proposed to approximate the NSPDS. Then, the robust \(H_{\infty }\) fuzzy filter design problem can be reformulated as a diffusion matrix inequality (DMI) problem. Since the DMI problem is difficult to be solved via traditional algebraic techniques, we utilize the divergence theorem and Poincare inequality to transform the DMIs to a set of linear matrix inequalities (LMIs) which could be easily solved with the help of MATLAB LMI Toolbox. Finally, a robust state estimation problem of an ecology system with intrinsic spatiotemporal continuous Wiener noise and discontinuous Poisson jump fluctuation is provided as an example to illustrate the design procedure and to confirm the \(H_{\infty }\) filtering performance of the proposed \(H_{\infty }\) fuzzy filter design method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen, B.S., Wu, C.F.: Robust scheduling filter design for a class of nonlinear stochastic poisson signal systems. IEEE Trans. Signal Process. 74(23), 6245–6257 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, B.S., Chen, W.H., Zhang, W.H.: Robust filter for nonlinear stochastic partial differential systems in sensor signal processing: fuzzy approach. IEEE Trans. Fuzzy Syst. 20(5), 957–970 (2012)

    Article  Google Scholar 

  3. Tseng, C.S.: Robust fuzzy filter design for a class of nonlinear stochastic systems. IEEE Trans. Fuzzy Syst. 15(2), 261–274 (2007)

    Article  MathSciNet  Google Scholar 

  4. Zhang, W.H., Chen, B.S., Tseng, C.S.: Robust \(H_{\infty }\) filtering for nonlinear stochastic systems. IEEE Trans. Signal Process. 53(2), 589–598 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yung, C.F., Li, Y.F., Sheu, H.T.: \(H_{\infty }\) filtering and solution bound for nonlinear systems. Int. J. Control 74(6), 565–570 (2001)

    Article  MATH  Google Scholar 

  6. Assawinchaichote, W., Nguang, S.K.: filtering for fuzzy singularly perturbed systems with pole placement constraints: an LMI approach. IEEE Trans. Signal Process. 52(6), 1659–1667 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, L., Zhu, Y., Shi, P., Zhao, Y.: Resilient asynchronous filtering for Markov jump neural networks with unideal measurements and multiplicative noises. IEEE Trans. Cybern. 45(12), 2840–2852 (2015)

    Article  Google Scholar 

  8. Nguang, S.K., Assawinchaichote, W.: \(H_{\infty }\) filtering for fuzzy dynamic systems with D stability constraints. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(11), 1503–1508 (2003)

    Article  MATH  Google Scholar 

  9. Gershon, E., Limebeer, D.J., Shaked, U., Yaesh, I.: Robust \(H_{\infty }\) filtering of stationary continuous-time linear systems with stochastic uncertainties. IEEE Trans. Autom. Control 46(11), 1788–1793 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grimble, M.J., El Sayed, A.: Solution of the \(H_{\infty }\) optimal linear filtering problem for discrete-time systems. IEEE Trans. Acoust. Speech Signal Process 38(7), 1092–1104 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xie, L., Soh, Y.C., de Souza, C.E.: Robust Kalman filtering for uncertain discrete-time systems. IEEE Trans. Autom. Control 39(6), 1310–1314 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, B.S., Tsai, C.L., Chen, Y.F.: Mixed \(H_{2}/H_{\infty }\) filtering design in multirate transmultiplexer systems: LMI approach. IEEE Trans. Signal Process. 49(11), 2693–2701 (2001)

    Article  Google Scholar 

  13. Su, X., Wu, L., Shi, P.: Sensor networks with random link failures: distributed filtering for T–S fuzzy systems. IEEE Trans. Ind. Inf. 9(3), 1739–1750 (2013)

    Article  Google Scholar 

  14. Nguang, S.K., Shi, P.: Delay-dependent \(H_{\infty }\) filtering for uncertain time delay nonlinear systems: an LMI approach. In: American Control Conference, pp. 5043–5048 (2006)

  15. Li, H.Y., Chen, Z.R., Wu, L.G., Do, H.P.: Event-triggered fault detection of nonlinear networked systems. IEEE Trans. Cybern. 47(4), 1041–1052 (2017)

    Article  Google Scholar 

  16. Pan, Y.N., Yang, G.H.: Event-triggered fuzzy control for nonlinear networked control systems. Fuzzy Sets Syst. 329, 91–107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chang, Y.T., Chen, B.S.: A fuzzy approach for robust reference-tracking-control design of nonlinear distributed parameter time-delayed systems and its application. IEEE Trans. Fuzzy Syst. 18(6), 1041–1057 (2010)

    Article  Google Scholar 

  18. Chen, B.S., Chang, Y.T.: Fuzzy state-space modeling and robust observer-based control design for nonlinear partial differential systems. IEEE Trans. Fuzzy Syst. 17(5), 1025–1043 (2009)

    Article  Google Scholar 

  19. Wang, J.W., Liu, Y.Q., Hu, Y.Y., Sun, C.Y.: A spatial domain decomposition approach to distributed H\(_{\infty }\)observer design of a linear unstable parabolic distributed parameter system with spatially discrete sensors. Int. J. Control 90, 2772–2785 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Z.P., Wu, H.N.: H\(_{\infty }\) sampled-data fuzzy control for non-linear parabolic distributed parameter systems with control inputs missing. IET Control Theory Appl. 11(10), 1530–1541 (2017)

    Article  MathSciNet  Google Scholar 

  21. Dai, X.S., Mei, S.G., Yuan, H.Y., Qin, Y.X: Robust H\(_{\infty }\) guaranteed cost control for uncertain linear stochastic partial differential systems with time-varying delay. In: World Congress on Intelligent Control and Automation (2016)

  22. Lasiecka, I., Triggiani, R.: Control theory for partial differential equations. In: Abstract Parabolic Systems: Continuous and Approximation Theories, vol. 1, 1st edn. Cambridge University Press, Cambridge (2000)

  23. Lasiecka, I., Triggiani, R.: Control theory for partial differential equations. In: Abstract Hyperbolic-like Systems Over a Finite Time Horizon: Continuous and Approximation Theories, vol. 2, 1st edn. Cambridge University Press, Cambridge (2000)

  24. Chow, P.L.: Stochastic Partial Differential Equations, 2nd edn. Chapman and Hall/CRC Press, Boca Raton (2014)

    Google Scholar 

  25. Chow, P.L.: Stability of nonlinear stochastic-evolution equations. J. Math. Anal. Appl. 89(2), 400–419 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lou, Y., Hu, G., Christofides, P.D.: Model predictive control of nonlinear stochastic PDEs: application to a sputtering process. In: American Control Conference (2009)

  27. Liu, K.: Stability of Infinite Dimensional Stochastic Differential Equations with Applications. Chapman and Hall/CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  28. Ho, S.J., Chen, B.S.: Robust fuzzy \(H_{\infty }\) estimator-based stabilization design for nonlinear parabolic partial differentials systems with different boundary conditions. IEEE Trans. Fuzzy Syst. 24(1), 208–222 (2016)

    Article  Google Scholar 

  29. Chang, Y.T., Ho, S.J., Chen, B.S.: Robust stabilization design of nonlinear stochastic partial differential systems: fuzzy approach. Fuzzy Sets Syst. 248, 61–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, W.H., Chen, B.S.: Robust filter for linear stochastic partial differential systems via a set of sensor measurements. IEEE Trans. Circuits Syst I Regular Papers 59(6), 1251–1264 (2012)

    Article  MathSciNet  Google Scholar 

  31. Zhang, W.H., Pan, Z.T., Li, Y.: H\(_{\infty }\) filtering for general delayed nonlinear stochastic systems with Markov jumps. Int. J. Fuzzy Syst. 19(6), 1989–2002 (2017)

    Article  MathSciNet  Google Scholar 

  32. Li, Y., Liu, X.K.: H-index for nonlinear stochastic systems with state- and input-dependent noises. Int. J. Fuzzy Syst. 20(3), 759–768 (2017)

    Article  MathSciNet  Google Scholar 

  33. Li, Y.M.: Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems. Automatica 89, 325–332 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, Y.M., Sui, S., Tong, S.C.: Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. Cybern. 47(2), 403–414 (2017)

    Google Scholar 

  35. Chen, W.H., Chen, B.S., Zhang, W.H.: Robust control design for nonlinear stochastic partial differential systems with poisson noise: fuzzy implementation. Fuzzy Sets Syst. 254, 83–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin, X., Zhang, R.: \(H_{\infty }\) control for stochastic systems with Poisson jumps. J. Syst. Sci. Complex. 24(4), 683–700 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hanson, F.B.: Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis, and Computation, vol. 13. SIAM Press, Philadelphia (2007)

    Book  MATH  Google Scholar 

  38. Xiao, W.L., Zhang, W.G., Zhang, X.L., Wang, Y.L.: Pricing currency options in a fractional Brownian motion with jumps. Econ. Model. 27(5), 935–942 (2010)

    Article  Google Scholar 

  39. Zhou, K., Khargonekar, P.P.: Robust stabilization of linear systems with norm-bounded time-varying uncertainty. Syst. Control Lett. 10(1), 17–20 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM Press, Philadelphia (1994)

    Book  MATH  Google Scholar 

  41. Murray, J.D.: Mathematical Biology I: An Introduction, p. 2002. Springer, New York (2002)

    Google Scholar 

  42. Murray, J.D.: Mathematical Biology. II Spatial Models and Biomedical Applications. Springer, New York (2001)

    Google Scholar 

  43. Christofides, P.D.: Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes. Birkh äser Boston, Cambridge (2012)

    Google Scholar 

  44. Myint-U, T., Debnath, L.: Partial Differential Equations for Scientists and Engineers. North Holland, Amsterdam (1987)

    MATH  Google Scholar 

  45. Pachpatte, B.G.: On Poincaré type integral inequalities. J. Math. Anal. Appl. 114(1), 111–115 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ashbaugh, M.S., Benguria, R.D.: Universal bounds for the low eigenvalues of neumann laplacians in N-dimensions. SIAM J. Math. Anal. 24(3), 557–570 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  47. Levine, H.A., Weingerger, H.F.: Inequalities between Dirichlet and Neumann eigenvalues. Arch. Rational Mech. Anal. 94, 193–208 (1986)

    Article  MathSciNet  Google Scholar 

  48. Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5, 286–292 (1960)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Technology of Taiwan under Grant No. MOST 106-2221-E-007-010-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor-Sen Chen.

Appendices

Appendix A: Proof of Theorem 1

Let us choose a positive definition functional \(V\left( {\overline{y}}\left( x,t\right) \right) \in C^{2}\left( {\mathbb {R}} ^{n}\right) >0\), \(\forall {\overline{y}}\left( x,t\right) \ne 0\), and \(V\left( 0\right) =0\). First, we discuss the augmented PDSs in (8) with \({\overline{v}}\left( x,t\right) \ne 0\). By the Itô-Lévy formula in (3), we have

$$\begin{aligned} &E\left\{ \int _{U}\int _{0}^{t_{f}}\left\| e\left( x,t\right) \right\| ^{2}{\text {d}}t{\text {d}}x\right\}&= E\int _{U}\int _{0}^{t_{f}}\left\| e\left( x,t\right) \right\| ^{2}+\frac{\partial V\left( {\overline{y}}\left( x,t\right) \right) }{\partial t}{\text {d}}t{\text {d}}x \nonumber \\&\quad+E\left\{ \int _{U}V\left( {\overline{y}}_{0}\left( x\right) \right) {\text {d}}x\right\} \nonumber \\&-E\left\{ \int _{U}V\left( {\overline{y}}\left( x,t_{f}\right) \right) {\text {d}}x\right\} \nonumber \\& \le E\left\{ \int _{U}V\left( {\overline{y}}_{0}\left( x\right) \right) {\text {d}}x\right\} \nonumber \\&\quad+E\int _{U}\int _{0}^{t_{f}}{\overline{y}}^{\mathrm{T}}\left( x,t\right) Q^{\mathrm{T}}Q\overline{y }\left( x,t\right) \nonumber \\&+\left( \frac{\partial V\left( {\overline{y}}\left( x,t\right) \right) }{\partial {\overline{y}}}\right) ^{\mathrm{T}}\times {\overline{D}} \nabla ^{2}{\overline{y}}\left( x,t\right) \nonumber \\&\quad+\left( \frac{\partial V\left( {\overline{y}}\left( x,t\right) \right) }{ \partial {\overline{y}}}\right) ^{\mathrm{T}}F\left( {\overline{y}}\left( x,t\right) \right) \nonumber \\&\quad+\left( \frac{\partial V\left( {\overline{y}}\left( x,t\right) \right) }{\partial {\overline{y}}}\right) ^{\mathrm{T}}{\overline{G}}_{v}{\overline{v}}\left( x,t\right) \nonumber \\&\quad+\frac{1}{2}F_{W}^{\mathrm{T}}\left( y\left( x,t\right) \right) \times \frac{\partial V^{2}\left( {\overline{y}}\left( x,t\right) \right) }{\partial {\overline{y}}^{2} }F_{W}\left( y\left( x,t\right) \right) \nonumber \\&+\lambda \left[ V\left( {\overline{y}}\left( x,t\right) +T\left( y\left( x,t\right) \right) \right) -V\left( {\overline{y}}\left( x,t\right) \right) \right] {\text {d}}t{\text {d}}x \end{aligned}$$
(A1)

According to Lemma 2 with \(X=\left( \frac{\partial V\left( {\overline{y}} \left( x,t\right) \right) }{\partial {\overline{y}}}\right) ^{\mathrm{T}}{\overline{G}} _{v}\) and \(Y={\overline{v}}\left( x,t\right)\), the inequality in (A1) can be rewritten as follows:

$$\begin{aligned} E\left\{ \int _{U}\int _{0}^{t_{f}}\left\| e\left( x,t\right) \right\| ^{2}{\text {d}}t{\text {d}}x\right\}& \le E\left\{ \int _{U}V\left( {\overline{y}}_{0}\left( x\right) \right) {\text {d}}x\right\} \nonumber \\&+E\int _{U}\int _{0}^{t_{f}}{\overline{y}}^{\mathrm{T}}\left( x,t\right) Q^{\mathrm{T}}Q{\overline{y}}\left( x,t\right) \nonumber \\&+\left( \frac{\partial V\left( {\overline{y}}\left( x,t\right) \right) }{\partial {\overline{y}}}\right) ^{\mathrm{T}} {\overline{D}} \nabla ^{2}{\overline{y}}\left( x,t\right) \nonumber \\&+\left( \frac{\partial V\left( {\overline{y}}\left( x,t\right) \right) }{ \partial {\overline{y}}}\right) ^{\mathrm{T}}F\left( {\overline{y}}\left( x,t\right) \right) \nonumber \\&+\frac{1}{4\gamma }\left( \frac{\partial V\left( {\overline{y}}\left( x,t\right) \right) }{\partial {\overline{y}}}\right) ^{\mathrm{T}}{\overline{G}}_{v} {\overline{G}}_{v}^{\mathrm{T}}\left( \frac{\partial V\left( {\overline{y}}\left( x,t\right) \right) }{\partial {\overline{y}}}\right) \nonumber \\&+\gamma {\overline{v}}^{\mathrm{T}}\left( x,t\right) {\overline{v}}\left( x,t\right) + \frac{1}{2}F_{W}^{\mathrm{T}}\left( y\left( x,t\right) \right) \nonumber \\&\frac{\partial V^{2}\left( {\overline{y}}\left( x,t\right) \right) }{\partial {\overline{y}}^{2} }F_{W}\left( y\left( x,t\right) \right) \nonumber \\&\lambda \left[ V\left( {\overline{y}}\left( x,t\right) +T\left( y\left( x,t\right) \right) \right) -V\left( {\overline{y}}\left( x,t\right) \right) \right] {\text {d}}t{\text {d}}x \end{aligned}$$
(A2)

If the following HJII holds

$$\begin{aligned} \begin{array}{l} \int _{U}{\overline{y}}^{\mathrm{T}}\left( x,t\right) Q^{\mathrm{T}}Q{\overline{y}}\left( x,t\right) +\left( \frac{\partial V\left( {\overline{y}}\left( x,t\right) \right) }{\partial {\overline{y}}}\right) ^{\mathrm{T}}F\left( {\overline{y}}\left( x,t\right) \right) \ \\ \quad +\left( \frac{\partial V\left( {\overline{y}}\left( x,t\right) \right) }{ \partial {\overline{y}}}\right) ^{\mathrm{T}}{\overline{D}}\nabla ^{2}{\overline{y}}\left( x,t\right) \\ \quad +\frac{1}{2}F_{W}^{\mathrm{T}}\left( y\left( x,t\right) \right) \frac{\partial V^{2}\left( {\overline{y}}\left( x,t\right) \right) }{\partial {\overline{y}}^{2} }F_{W}\left( y\left( x,t\right) \right) \\ \quad +\frac{1}{4\gamma }\left( \frac{\partial V\left( {\overline{y}}\left( x,t\right) \right) }{\partial {\overline{y}}}\right) ^{\mathrm{T}}{\overline{G}} _{v}\times {\overline{G}}_{v}^{\mathrm{T}}\left( \frac{\partial V\left( {\overline{y}} \left( x,t\right) \right) }{\partial {\overline{y}}}\right) \\ \quad +\lambda \left[ V\left( {\overline{y}}\left( x,t\right) +T\left( y\left( x,t\right) \right) \right) -V\left( {\overline{y}}\left( x,t\right) \right) \right] {\text {d}}x<0 \end{array} \end{aligned}$$
(A3)

i.e., the inequality (11) holds, then the robust \(H_{\infty }\) filter performance on the spatiotemporal domain U achieves to (10) if the initial state \(V\left( {\overline{y}}_{0}\left( x\right) \right) \ne 0\), or the robust \(H_{\infty }\) filter performance achieves to (9) if the initial state \(V\left( {\overline{y}}_{0}\left( x\right) \right) =0\).

In the case \({\overline{v}}\left( x,t\right) =0\), for all \(x\in U\) and \(t\in \left[ 0,\infty \right)\). Then, (10) becomes

$$\begin{aligned} E\left\{ \int _{U}\int _{0}^{t_{f}}\left\| e\left( x,t\right) \right\| ^{2}{\text {d}}t{\text {d}}x\right\} \le E\left\{ \int _{U}V\left( {\overline{y}}_{0}\left( x\right) \right) {\text {d}}x\right\} \end{aligned}$$
(A4)

Since the right-hand side of (A4) is a finite value dependent on the bounded initial state \({\overline{y}}_{0}\left( x\right)\) and the compact set U. Then, \(\left\| e\left( x,t\right) \right\| ^{2}\rightarrow 0\) as \(t_{f}\rightarrow \infty\), \(\forall x\in U\); i.e., the filtering error system without external disturbance \({\overline{v}}\left( x,t\right)\) in (8) is asymptotically zero in the mean square sense. We finish the proof of Theorem 1. \(\square\)

Appendix B: Proof of Theorem 2

We consider the filtering error system in (18) and Lyapunov functional (20). Similar to the proof of Theorem 1, by using the Lemma 1 and Lemma 2, (A2) can be rearranged as follows:

$$\begin{aligned} & {\{E}\left\{ \int _{U}\int _{0}^{t_{f}}e^{\mathrm{T}}\left( x,t\right) e\left( x,t\right) {\text {d}}t{\text {d}}x\right\} {\le E}\left\{ \int _{U}V\left( {\overline{y}}_{0}\left( x\right) \right) {\text {d}}x\right\} \\ &\quad {+\gamma }\left\{ E\int _{U}\int _{0}^{t_{f}}{\overline{v}} ^{\mathrm{T}}\left( x,t\right) {\overline{v}}\left( x,t\right) {\text {d}}t{\text {d}}x\right\} {+E}\int _{U}\int _{0}^{t_{f}}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {Q}^{\mathrm{T}}{Q}{\overline{y}}\left( x,t\right) \\ &\quad {+\nabla }^{2}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{D}}^{\mathrm{T}} {\overline{P}}{\overline{y}}\left( x,t\right) {+}{\overline{y}} ^{\mathrm{T}}\left( x,t\right) {\overline{P}}{\overline{D}}{\nabla }^{2} {\overline{y}}\left( x,t\right) {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{A}}_{i}^{\mathrm{T}}{\overline{P}}{\overline{y}}\left( x,t\right) \\ &\quad {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{P}}{\overline{A}}_{i} {\overline{y}}\left( x,t\right) {+}\frac{1}{\gamma }{\overline{y}} ^{\mathrm{T}}\left( x,t\right) {\overline{P}}{\overline{G}}_{v}{\overline{G}}_{v}^{\mathrm{T}} {\overline{P}}{\overline{y}}\left( x,t\right) \\ &\quad {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{P}}{\overline{L}}_{i} {\overline{L}}_{i}^{\mathrm{T}}{\overline{P}}{\overline{y}}\left( x,t\right) {+} {\overline{\varepsilon }}^{\mathrm{T}}\left( y\left( x,t\right) \right) \overline{ \varepsilon }\left( y\left( x,t\right) \right) \\ &\quad {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{A}}_{Wi}^{\mathrm{T}} {\overline{P}}{\overline{A}}_{Wi}{\overline{y}}\left( x,t\right) {+} {\overline{\varepsilon }}_{f_{W}}^{\mathrm{T}}\left( y\left( x,t\right) \right) {\overline{P}}{\overline{\varepsilon }}_{f_{W}}\left( y\left( x,t\right) \right) \\ &\quad {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{A}}_{Wi}^{\mathrm{T}} {\overline{PP}}{\overline{A}}_{Wi}{\overline{y}}\left( x,t\right) {+} {\overline{\varepsilon }}_{f_{W}}^{\mathrm{T}}\left( y\left( x,t\right) \right) {\overline{\varepsilon }}_{f_{W}}\left( y\left( x,t\right) \right) \\ &\quad {+\lambda [}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{N}} _{i}^{\mathrm{T}}{\overline{P}}{\overline{N}}_{i}{\overline{y}}\left( x,t\right) {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{P}}{\overline{N}}_{i} {\overline{y}}\left( x,t\right) \\ &\quad {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{N}}_{i}^{\mathrm{T}} {\overline{P}}{\overline{y}}\left( x,t\right) {+}{\overline{y}} ^{\mathrm{T}}\left( x,t\right) {P}{\overline{P}}{\overline{y}}\left( x,t\right) {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{N}} _{i}^{\mathrm{T}}{\overline{P}}{\overline{P}}{\overline{N}}_{i}{\overline{y}}\left( x,t\right) \\ &\quad {+2}{\overline{\varepsilon }}_{\tau }^{\mathrm{T}}\left( y\left( x,t\right) \right) {\overline{\varepsilon }}_{\tau }\left( y\left( x,t\right) \right) {+}{\overline{\varepsilon }}_{\tau }^{\mathrm{T}}\left( y\left( x,t\right) \right) {{\bar{P}}}{\overline{\varepsilon }}_{\tau }\left( y\left( x,t\right) \right) {]{\text {d}}t{\text {d}}x\}} \end{aligned}$$
(B1)

Hence, if the following inequalities hold for \(i=1,2,\ldots ,l\)

$$\begin{aligned}&[{\overline{y}}^{\mathrm{T}}\left( x,t\right) {Q}^{\mathrm{T}}{Q} {\overline{y}}\left( x,t\right) {+\nabla }^{2}{\overline{y}} ^{\mathrm{T}}\left( x,t\right) {\overline{D}}^{\mathrm{T}}{\overline{P}}{\overline{y}}\left( x,t\right) {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{P}} {\overline{D}}{\nabla }^{2}{\overline{y}}\left( x,t\right) \\&\qquad {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{A}}_{i}^{\mathrm{T}} {\overline{P}}{\overline{y}}\left( x,t\right) {+}{\overline{y}} ^{\mathrm{T}}\left( x,t\right) {\overline{P}}{\overline{A}}_{i}{\overline{y}}\left( x,t\right) {+}\frac{1}{\gamma }{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{P}}{\overline{G}}_{v}{\overline{G}}_{v}^{\mathrm{T}}{\overline{P}}{\overline{y}} \left( x,t\right) \\&\qquad {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{P}}{\overline{L}}_{i} {\overline{L}}_{i}^{\mathrm{T}}{\overline{P}}{\overline{y}}\left( x,t\right) {+} {\overline{\varepsilon }}^{\mathrm{T}}\left( y\left( x,t\right) \right) \overline{ \varepsilon }\left( y\left( x,t\right) \right) \\&\qquad {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{A}}_{Wi}^{\mathrm{T}} {\overline{P}}{\overline{A}}_{Wi}{\overline{y}}\left( x,t\right) {+} {\overline{\varepsilon }}_{f_{W}}^{\mathrm{T}}\left( y\left( x,t\right) \right) {\overline{P}}{\overline{\varepsilon }}_{f_{W}}\left( y\left( x,t\right) \right) \\&\qquad {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{A}}_{Wi}^{\mathrm{T}} {\overline{PP}}{\overline{A}}_{Wi}{\overline{y}}\left( x,t\right) {+} {\overline{\varepsilon }}_{f_{W}}^{\mathrm{T}}\left( y\left( x,t\right) \right) {\overline{\varepsilon }}_{f_{W}}\left( y\left( x,t\right) \right) \\&\qquad {+\lambda [}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{N}} _{i}^{\mathrm{T}}{\overline{P}}{\overline{N}}_{i}{\overline{y}}\left( x,t\right) {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{P}}{\overline{N}}_{i} {\overline{y}}\left( x,t\right) \\&\qquad {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{N}}_{i}^{\mathrm{T}} {\overline{P}}{\overline{y}}\left( x,t\right) {+}{\overline{y}} ^{\mathrm{T}}\left( x,t\right) {P}{\overline{P}}{\overline{y}}\left( x,t\right) \\&\qquad {+}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{N}}_{i}^{\mathrm{T}} {\overline{P}}{\overline{P}}{\overline{N}}_{i}{\overline{y}}\left( x,t\right) {+2}{\overline{\varepsilon }}_{\tau }^{\mathrm{T}}\left( y\left( x,t\right) \right) {\overline{\varepsilon }}_{\tau }\left( y\left( x,t\right) \right) \\&\qquad {+}{\overline{\varepsilon }}_{\tau }^{\mathrm{T}}\left( y\left( x,t\right) \right) {{\bar{P}}}{\overline{\varepsilon }}_{\tau }\left( y\left( x,t\right) \right) {]<0,} \end{aligned}$$

then the robust \(H_{\infty }\) filtering performance in (10) on spatiotemporal domain U will be achieved if the effect of the initial state \(V\left( {\overline{y}}_{0}\left( x\right) \right) \ne 0\), or the robust \(H_{\infty }\) filter performance achieves to (9) if the effect of the initial state \(V\left( {\overline{y}}_{0}\left( x\right) \right) =0\). \(\square\)

Appendix C: Proof of Theorem 3

Let us denote \({\overline{z}}=Q_{d}^{\frac{1}{2}}{\overline{y}}\left( x,t\right)\) and \(Q_{d}={\overline{D}}^{\mathrm{T}}{\overline{P}}+{\overline{P}}{\overline{D}}\), then we get:

$$\begin{aligned} \left. \begin{array}{l} \nabla ^{2}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{D}}^{\mathrm{T}}{\overline{P}} {\overline{y}}\left( x,t\right) +{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{P}} {\overline{D}}\nabla ^{2}{\overline{y}}\left( x,t\right) \\ \quad ={\overline{z}}\nabla ^{2}{\overline{z}}=\sum \limits _{i=1}^{n}{\overline{z}} _{i}\nabla ^{2}{\overline{z}}_{i} \end{array} \right. \end{aligned}$$
(C1)

where \({\overline{z}}=\left[ {\overline{z}}_{1}\ {\overline{z}}_{2}\ \cdots \ {\overline{z}}_{n}\right] ^{\mathrm{T}}\).

Based on the identity \(\nabla \cdot \left( {\overline{z}}_{i}\nabla {\overline{z}}_{i}\right) ={\overline{z}}_{i}\nabla ^{2}{\overline{z}}_{i}+\left| \nabla {\overline{z}}_{i}^{2}\right|\), then we can rewrite (C1) as follows [43]:

$$\begin{aligned}&\nabla ^{2}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{D}}^{\mathrm{T}}{\overline{P}} {\overline{y}}\left( x,t\right) +{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{P}} {\overline{D}}\nabla ^{2}{\overline{y}}\left( x,t\right) \nonumber \\&\quad =\sum \limits _{i=1}^{n}{\overline{z}}_{i}\nabla ^{2}{\overline{z}} _{i}=\sum \limits _{i=1}^{n}\nabla \cdot \left( {\overline{z}}_{i}\nabla {\overline{z}}_{i}\right) -\sum \limits _{i=1}^{n}\left| \nabla {\overline{z}} _{i}^{2}\right| \end{aligned}$$
(C2)

By using divergence theorem [43, 44] and the Neumann boundary condition and Dirichlet boundary condition in (2) with \(\nabla {\overline{z}} _{i}\cdot \overrightarrow{n}_{a}=\frac{\partial {\overline{z}}_{i}}{\partial \overrightarrow{n}_{a}}\), then (C2) can be rewritten as [44, 45] :

$$\begin{aligned}&\int _{U}\sum \limits _{i=1}^{n}{\overline{z}}_{i}\nabla ^{2}{\overline{z}} _{i}{\text {d}}x=\oint \nolimits _{\partial U}\sum \limits _{i=1}^{n}\left( {\overline{z}} _{i}\nabla {\overline{z}}_{i}\right) \cdot \overrightarrow{n} _{a}{\text {d}}s-\int _{U}\sum \limits _{i=1}^{n}\left| \nabla {\overline{z}} _{i}\right| ^{2}{\text {d}}x \nonumber \\&\quad =\oint \nolimits _{\partial U}\sum \limits _{i=1}^{n}{\overline{z}}_{i}\left( \frac{\partial {\overline{z}}_{i}}{\partial \overrightarrow{n}_{a}}\right) {\text {d}}s-\int _{U}\sum \limits _{i=1}^{n}\left| \nabla {\overline{z}} _{i}\right| ^{2}{\text {d}}x=-\int _{U}\sum \limits _{i=1}^{n}\left| \nabla {\overline{z}}_{i}\right| ^{2}{\text {d}}x \end{aligned}$$
(C3)

Now, consider the eigenvalues of the Laplace operator \(\nabla\) under Dirichlet boundary condition, which is defined as

$$\begin{aligned} \lambda _{k}^{(D)}=\sup \inf \frac{\int _{U}\left| \nabla \overline{z} \right| ^{2}{\text {d}}x}{\int _{U}\left| {\overline{z}}\right| ^{2}{\text {d}}x} \end{aligned}$$
(C4)

where the sup is taken over all choices of vector \(\{\psi _{i}^{(D)}\}_{i=1}^{k-1}\) which are orthogonal basis to the set \(D=\{y(x,t)\in L_{2}(U\times {\mathbb {R}} _{+}; {\mathbb {R}} ^{n})\mid y(x,t),\frac{\partial y(x,t)}{\partial x},\frac{\partial ^{2}y(x,t) }{\partial x^{2}}\in L_{2}(U\times {\mathbb {R}} _{+}; {\mathbb {R}} ^{n})\}\) and the inf is taken over all \({\overline{z}}\in D\) which is orthogonal to \(\{\psi _{i}^{(D)}\}_{i=1}^{k-1}.\)

The eigenvalues of laplace operator satisfy 0\(<\lambda _{1}^{(D)}\le \lambda _{2}^{(D)}\le \lambda _{3}^{(D)}\le \lambda _{4}^{(D)}\le \cdots \le \lambda _{k}^{(D)}\le \cdots\). Also, the lowest eigenvalue \(\lambda _{1}^{(D)}\) satisfies the following equality [28]:

$$\begin{aligned} \lambda _{1}^{(D)}=\inf _{{\overline{z}}\in D\backslash \{0\}}\frac{ \int _{U}\left| \nabla {\overline{z}}\right| ^{2}{\text {d}}x}{\int _{U}\left| {\overline{z}}\right| ^{2}{\text {d}}x} \end{aligned}$$
(C5)

Furthermore, we immediately have the following inequality:

$$\begin{aligned} -\int _{U}\left| \nabla {\overline{z}}\right| ^{2}{\text {d}}x\le -\lambda _{1}^{(D)}\int _{U}\left| {\overline{z}}\right| ^{2}{\text {d}}x,\forall {\overline{z}}\in D\backslash \{0\} \end{aligned}$$
(C6)

From (C2), (C3) , (C6) and integrating both sides from 0 to \(t_{f}\) with respect to the variable t, we have the results.

$$\begin{aligned}&\int _{0}^{t_{f}}\int _{U}\nabla ^{2}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{D}}^{\mathrm{T}}{\overline{P}}{\overline{y}}\left( x,t\right) +{\overline{y}} ^{\mathrm{T}}\left( x,t\right) {\overline{P}}{\overline{D}}\nabla ^{2}{\overline{y}}\left( x,t\right) {\text {d}}x{\text {d}}t \nonumber \\&\quad =-\int _{0}^{t_{f}}\int _{U}\left| \nabla {\overline{z}}\right| ^{2}{\text {d}}x{\text {d}}t\le -\lambda _{1}^{(D)}\int _{0}^{t_{f}}\int _{U}\left| \overline{z }\right| ^{2}{\text {d}}x{\text {d}}t \nonumber \\&\quad =-\lambda _{1}^{(D)}\int _{0}^{t_{f}}\int _{U}{\overline{y}}^{\mathrm{T}}\left( x,t\right) ({\overline{D}}^{\mathrm{T}}{\overline{P}}+{\overline{P}}{\overline{D}})\overline{y }\left( x,t\right) {\text {d}}x{\text {d}}t \end{aligned}$$
(C7)

Hence, we can choose \(c_{p}=\lambda _{1}^{(D)}\) in Eq. (22) under Dirichlet boundary condition.

Now, we focus on the case Neumann boundary condition. Consider the eigenvalues of the Laplace operator \(\nabla\) under Dirichlet boundary condition, which is defined as

$$\begin{aligned} \lambda _{k}^{(N)}=\sup \inf \frac{\int _{U}\left| \nabla \overline{z} \right| ^{2}{\text {d}}x}{\int _{U}\left| {\overline{z}}\right| ^{2}{\text {d}}x} \end{aligned}$$
(C8)

where the sup is taken over all choices of vector \(\{\psi _{i}^{(N)}\}_{i=1}^{k-1}\) which are orthogonal basis of the set D and the inf is taken over all \({\overline{z}}\in D\) which is orthogonal to \(\{\psi _{i}^{(D)}\}_{i=1}^{k-1}.\) Similar to the deviation of Eqs. (C1), (C2), (C3), (C4), (C6), (C7), we have the following results:

$$\begin{aligned}&\int _{0}^{t_{f}}\int _{U}\nabla ^{2}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{D}}^{\mathrm{T}}{\overline{P}}{\overline{y}}\left( x,t\right) +{\overline{y}} ^{\mathrm{T}}\left( x,t\right) {\overline{P}}{\overline{D}}\nabla ^{2}{\overline{y}}\left( x,t\right) {\text {d}}x{\text {d}}t \nonumber \\&\quad \le -\lambda _{2}^{(N)}\int _{0}^{t_{f}}\int _{U}{\overline{y}}^{\mathrm{T}}\left( x,t\right) ({\overline{D}}^{\mathrm{T}}{\overline{P}}+{\overline{P}}{\overline{D}})\overline{y }\left( x,t\right) {\text {d}}x{\text {d}}t \end{aligned}$$
(C9)

Hence, we can choose \(c_{p}=\lambda _{2}^{(D)}\) in Eq. (22) under Neumann boundary condition. Moreover, the eigenvalues \(\lambda _{2}^{(N)},\lambda _{1}^{(D)}\) satisfy the following inequality [46,47,48] :

$$\begin{aligned} \frac{\pi ^{2}}{d(U)^{2}}\le \lambda _{2}^{(N)}\le \lambda _{1}^{(D)}, \end{aligned}$$
(C10)

where d(U) is the diameter of set U and U is any bounded convex domain.

Hence, Eqs. (C7) and (C9) can be written as

$$\begin{aligned}&\int _{0}^{t_{f}}\int _{U}\nabla ^{2}{\overline{y}}^{\mathrm{T}}\left( x,t\right) {\overline{D}}^{\mathrm{T}}{\overline{P}}{\overline{y}}\left( x,t\right) +{\overline{y}} ^{\mathrm{T}}\left( x,t\right) {\overline{P}}{\overline{D}}\nabla ^{2}{\overline{y}}\left( x,t\right) {\text {d}}x{\text {d}}t \nonumber \\&\quad \le -\frac{\pi ^{2}}{d(U)^{2}}\int _{0}^{t_{f}}\int _{U}{\overline{y}} ^{\mathrm{T}}\left( x,t\right) ({\overline{D}}^{\mathrm{T}}{\overline{P}}+{\overline{P}}{\overline{D}} ){\overline{y}}\left( x,t\right) {\text {d}}x{\text {d}}t \end{aligned}$$
(C11)

In other words, the constant \(c_{p}\) can be chosen as \(\frac{\pi ^{2}}{ d(U)^{2}}\) under the Dirichlet boundary condition and Neumann boundary condition if the domain U is bounded and convex. We finish the proof of Theorem 3. \(\square\)

Appendix D: Proof of Theorem 4

By using the result in Theorem 3 with bounds of the fuzzy approximation errors in (19) and constraints (24), (B1) can be rearranged as follows:

$$\begin{aligned}&\left. E\left\{ \int _{U}\int _{0}^{t_{f}}e^{\mathrm{T}}\left( x,t\right) e\left( x,t\right) {\text {d}}t{\text {d}}x\right\} \le E\left\{ \int _{U}V\left( {\overline{y}}_{0}\left( x\right) \right) {\text {d}}x\right\} \right. \nonumber \\&\qquad +E\int _{U}\int _{0}^{t_{f}}{\overline{y}}^{\mathrm{T}}\left( x,t\right) [Q^{\mathrm{T}}Q-c_{p}Q_{d}+{\overline{A}}_{i}^{\mathrm{T}}{\overline{P}}+{\overline{P}}{\overline{A}} _{i} \nonumber \\&\qquad +\frac{1}{\gamma }{\overline{P}}{\overline{G}}_{v}{\overline{G}}_{v}^{\mathrm{T}}\overline{P }+{\overline{P}}{\overline{L}}_{i}{\overline{L}}_{i}^{\mathrm{T}}{\overline{P}}+\xi + {\overline{A}}_{Wi}^{\mathrm{T}}{\overline{P}}{\overline{A}}_{Wi}+{\overline{A}}_{Wi}^{\mathrm{T}} {\overline{P}}{\overline{P}}{\overline{A}}_{Wi} \nonumber \\&\qquad +\lambda ({\overline{N}}_{i}^{\mathrm{T}}{\overline{P}}{\overline{N}}_{i}+{\overline{N}} _{i}^{\mathrm{T}}{\overline{P}}{\overline{P}}{\overline{N}}_{i}+{\overline{P}}{\overline{N}} _{i}+{\overline{N}}_{i}^{\mathrm{T}}{\overline{P}}+{\overline{P}}{\overline{P}})]{\overline{y}} \left( x,t\right) {\text {d}}t{\text {d}}x \nonumber \\&\qquad +\gamma E\left\{ \int _{U}\int _{0}^{t_{f}}{\overline{v}}^{\mathrm{T}}\left( x,t\right) {\overline{v}}\left( x,t\right) {\text {d}}t{\text {d}}x\right\} \end{aligned}$$
(D1)

with \(\xi = {\text {diag}}((\sigma _{1}+(2+a+b)\sigma _{2}+(4+a+b)\lambda \sigma _{3}+\sigma _{4})I\) , 0).

If the following Riccati-like inequalities hold

$$\begin{aligned}&Q^{\mathrm{T}}Q-c_{p}Q_{d}+{\overline{A}}_{i}^{\mathrm{T}}{\overline{P}}+{\overline{P}}{\overline{A}} _{i}+\frac{1}{\gamma }{\overline{P}}{\overline{G}}_{v}{\overline{G}}_{v}^{\mathrm{T}} {\overline{P}} \nonumber \\&\qquad +{\overline{P}}{\overline{L}}_{i}{\overline{L}}_{i}^{\mathrm{T}}{\overline{P}}+\xi +\overline{ A}_{Wi}^{\mathrm{T}}{\overline{P}}{\overline{A}}_{Wi}+{\overline{A}}_{Wi}^{\mathrm{T}}{\overline{P}} {\overline{P}}{\overline{A}}_{Wi} \nonumber \\&\qquad +\lambda ({\overline{N}}_{i}^{\mathrm{T}}{\overline{P}}{\overline{N}}_{i}+{\overline{N}} _{i}^{\mathrm{T}}{\overline{P}}{\overline{P}}{\overline{N}}_{i}+{\overline{P}}{\overline{N}} _{i}+{\overline{N}}_{i}^{\mathrm{T}}{\overline{P}}+{\overline{P}}{\overline{P}})<0 \end{aligned}$$
(D2)

then the \(H_{\infty }\) filtering performance in (9) or (10) is achieved.

Next, by applying the Schur complement and substituting matrices in (18) to (D2) , the Riccati-like inequalities in (D2) can be rearranged the following LMI with \(Y_{i}=P_{2}L_{i}\):

$$\begin{aligned} {\tiny \begin{array}{c} \left[ \begin{array}{ccccccccc} \theta _{1}^{i} & 0 & N_{i}^{\mathrm{T}}P_{1} &{} 0 &{} P_{1} &{} 0 &{} N_{i}^{\mathrm{T}}P_{1} &{} 0 &{} P_{1}g_{v} \\ *&{} \theta _{2}^{i} &{} 0 &{} N_{i}^{\mathrm{T}}P_{2} &{} 0 &{} P_{2} &{} 0 &{} N_{i}^{\mathrm{T}}P_{2} &{} P_{2}g_{v} \\ *&{} *&{} -\frac{1}{\lambda }P_{1} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ *&{} *&{} *&{} -\frac{1}{\lambda }P_{2} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ *&{} *&{} *&{} *&{} -\frac{1}{\lambda }I &{} 0 &{} 0 &{} 0 &{} 0 \\ *&{} *&{} *&{} *&{} *&{} -\frac{1}{\lambda }I &{} 0 &{} 0 &{} 0 \\ *&{} *&{} *&{} *&{} *&{} *&{} -\frac{1}{\lambda }I &{} 0 &{} 0 \\ *&{} *&{} *&{} *&{} *&{} *&{} *&{} -\frac{1}{\lambda }I &{} 0 \\ *&{} *&{} *&{} *&{} *&{} *&{} *&{} *&{} -\gamma I \\ *&{} *&{} *&{} *&{} *&{} *&{} *&{} *&{} *\\ *&{} *&{} *&{} *&{} *&{} *&{} *&{} *&{} *\\ *&{} *&{} *&{} *&{} *&{} *&{} *&{} *&{} *\\ *&{} *&{} *&{} *&{} *&{} *&{} *&{} *&{} *\\ *&{} *&{} *&{} *&{} *&{} *&{} *&{} *&{} *\\ *&{} *&{} *&{} *&{} *&{} *&{} *&{} *&{} *\\ *&{} *&{} *&{} *&{} *&{} *&{} *&{} *&{} *\end{array} \right. \\ \left. \begin{array}{ccccccc} 0 &{} A_{wi}^{\mathrm{T}}P_{1} &{} 0 &{} A_{wi}^{\mathrm{T}}P_{1} &{} 0 &{} P_{1} &{} 0 \\ Y_{i}E_{m} &{} 0 &{} A_{wi}^{\mathrm{T}}P_{2} &{} 0 &{} A_{wi}^{\mathrm{T}}P_{2} &{} P_{2} &{} -Y_{i} \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ -\gamma I &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ *&{} -P_{1} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ *&{} *&{} -P_{2} &{} 0 &{} 0 &{} 0 &{} 0 \\ *&{} *&{} *&{} -I &{} 0 &{} 0 &{} 0 \\ *&{} *&{} *&{} *&{} -I &{} 0 &{} 0 \\ *&{} *&{} *&{} *&{} *&{} -I &{} 0 \\ *&{} *&{} *&{} *&{} *&{} *&{} -I \end{array} \right] \end{array} }<0 \end{aligned}$$
(D3)

where \(\theta _{1}^{i}=A_{i}^{\mathrm{T}}P_{1}+P_{1}A_{i}+\lambda \left( N_{i}^{\mathrm{T}}P_{1}+P_{1}N_{i}\right) -c_{p}(DP_{1}+P_{1}D^{\mathrm{T}})+(\sigma _{1}+(2+a+b)\sigma _{2}+(4+a+b)\lambda \sigma _{3}+\sigma _{4})I_{3\times 3}\), \(\theta _{2}^{i}=\lambda N_{i}^{\mathrm{T}}P_{2}+\lambda P_{2}N_{i}+A_{i}^{\mathrm{T}}P_{2}+P_{2}A_{i}-Y_{i}C_{i}-C_{i}^{\mathrm{T}}Y_{i}^{\mathrm{T}}-c_{p}(D^{\mathrm{T}}P_{2}+P_{2}D)+I\).i.e., if the LMIs in (D6) and (25) are with the solution \(a>0\),\(b>0\), \(P_{1}>0\), \(P_{2}>0\) and \(Y_{i}\), then the robust \(H_{\infty }\) filter performance in (10) on spatiotemporal domain U is achieved if the effect of the initial state \(V\left( {\overline{y}}_{0}\left( x\right) \right) \ne 0\), or the robust \(H_{\infty }\) filter performance in (9) is achieved if the effect of the initial state \(V\left( {\overline{y}}_{0}\left( x\right) \right) =0\). We finish the proof of Theorem 4. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, BS., Lee, MY. & Chen, DL. Robust Fuzzy Filter Design for Nonlinear Parabolic Partial Differential Systems with Continuous Wiener Noise and Discontinuous Poisson Noise. Int. J. Fuzzy Syst. 21, 1–18 (2019). https://doi.org/10.1007/s40815-018-0553-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0553-9

Keywords

Navigation