Skip to main content
Log in

A Production: Inventory Model for Defective Items with Shortages Incorporating Inflation and Time Value of Money

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper develops a production-inventory model of a single product with imperfect production process in which inflation and time value of money are considered under shortages. Demand rate has been considered to be a function of quadratic decreasing and exponential decreasing of selling price. The selling price of a unit is determined by a mark-up over the production cost. Unit production cost is considered incorporating several features like energy and labour cost, raw material cost, replenishment rate and other factors of the manufacturing system. The defective items which is a certain fraction of the total production or a random number are either reworked or refunded if those reach to the customer. Two scenarios have been considered in which defective items are refunded from the customer with penalty in scenario (a) and the defective items are repaired and sold to the customer as good items in scenario (b). Based on these two scenarios, three models have been developed in which defective items are certain fraction of the produced quantity in Model-I, a random number in Model-II, and are dependent in reliability parameter and time in Model-III. Considering all these phenomena optimum production of the product has been evaluated to have maximum profit. Finally, numerical examples are given to illustrate the results along with graphical analysis. Sensitivity analysis has also been carried out for different values of the parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee, J.S., Park, K.S.: Joint deterioration of production cycle and inspection intervals in a deteriorating production. J. Oper. Res. Soc. 42, 775–783 (1991)

    Article  MATH  Google Scholar 

  2. Urban, T.L.: Deterministic inventory models incorporating marketing decisions. Comput. Ind. Eng. 22, 85–93 (1992)

    Article  Google Scholar 

  3. Lin, C.S.: Integrated production inventory models with imperfect production processes and a limited capacity for raw materials. Math. Comput. Model. 29, 31–39 (1999)

    Article  MATH  Google Scholar 

  4. Rosenblatt, J., Lee, H.L.: Economic production cycles with imperfect production process. IIE Trans. 18, 48–55 (1986)

    Article  Google Scholar 

  5. Lee, H.L., Rosenblatt, J.: Simultaneous determination of production cycle and inspection intervals in a deteriorating production. Manag. Sci. 33, 1125–1136 (1987)

    Article  MATH  Google Scholar 

  6. Sana, S., Goyal, S.K., Chaudhuri, K.S.: An imperfect production process in a volume flexible inventory model. Int. J. Prod. Econ. 105, 548–559 (2007)

    Article  Google Scholar 

  7. Sana, S., Goyal, S.K., Chaudhuri, K.S.: On a volume flexible inventory model for items with an imperfect production system. Int. J. Oper. Res. 2(1), 64–80 (2007b)

    Article  MATH  Google Scholar 

  8. Sarkar, B., Gupta, H., Chaudhuri, K.S., Goyal, S.K.: An integrated inventory model with variable lead time, defective units and delay in payments. Appl. Math. Comput. 237, 650–658 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Sarkar, B., Moon, I.: Improved quality, setup cost reduction, and variable backorder costs in an imperfect production process. Int. J. Prod. Econ. 155, 204–213 (2014)

    Article  Google Scholar 

  10. Sarkar, B.: An inventory model with reliability in an imperfect production process. Appli. Math. Comput. 218(2012), 4881–4891 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sarkar, B.: An EOQ model with delay in payments and stock dependent demand in the presence of imperfect production. Appl. Math. Comput. 218(2012), 8295–8308 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Mondal, B., Bhunia, A.K., Maiti, M.: Inventory models for defective items incorporating marketing decisions with variable production cost. Appl. Math. Model. 33, 2845–2852 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Whitin, T.M.: Inventory control and price theory. Manage. Sci. 2, 61–68 (1995)

    Article  Google Scholar 

  14. Kunreuther, H., Richard, J.F.: Optimal pricing and inventory decisions for non-seasonal items. Econometrica 39, 173–175 (1977)

    Article  MATH  Google Scholar 

  15. Lee, H.L., Rosenblatt, M.J.: The effects of varying marketing policies and conditions on the economic ordering quantity. Int. J. Prod. Res 24, 593–598 (1986)

    Article  Google Scholar 

  16. Abad, P.L.: Optimal pricing and lot sizing under conditions of perishable and partial back ordering. Manag. Sci. 42, 1093–1104 (1996)

    Article  MATH  Google Scholar 

  17. Mukherjee, S.P.: Optimum ordering interval for time-varying decay rate of inventory. Opsearch 24, 19–24 (1987)

    MathSciNet  MATH  Google Scholar 

  18. Maiti, A.K., Maiti, M.K., Maiti, M.: Inventory model with stochastic lead-time and price dependent demand incorporating advance payment. Appl. Math. Model. 33, 2433–2443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sarkar, B., Mandal, P., Sarkar, S.: An EMQ model with price and time dependent demand under the effect of reliability and inflation. App. Math. Comput. 231(15), 414–421 (2014)

    Article  MathSciNet  Google Scholar 

  20. Khanra, S., Mandal, B., Sarkar, B.: An inventory model with time dependent demand and shortages under trade credit policy. Econ. Model. 35, 349–355 (2013)

    Article  Google Scholar 

  21. Sett, B.K., Sarkar, B., Goswami, A.: A two-warehouse inventory model with increasing demand and time varying deterioration. Scientia Iranica Trans. E Indust. Eng. 19, 306–310 (2012)

    Google Scholar 

  22. Sarkar, B., Sana, S.S., Chaudhuri, K.S.: An imperfect production process for time varying demand with inflation and time value of money - An EMQ model. Expert Syst. Appl. 38, 13543–13548 (2011)

    Google Scholar 

  23. Sarkar, B., Sana, S.S., Chaudhuri, K.S.: A finite replenishment model with increasing demand under inflation. Int. J. Math. Oper. Res. 2(3), 347–385 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Buzacott, J.A.: Economic order quantities with inflation. Oper. Res. Q. 26, 553–558 (1975)

    Article  Google Scholar 

  25. Misra, R.B.: A note on optimal inventory management under inflation. Nav. Logist. Q. 26, 161–165 (1979)

    Article  MATH  Google Scholar 

  26. Van Hees, R.N., Monhemius, W.: Production and Inventory control: Theory and Practice, pp. 81–101. Barnes and Noble, Macmillan, New York (1972)

    Book  Google Scholar 

  27. Bierman, H., Thomas, J.: Inventory decisions under inflationary conditions. Decis. Sci. 8, 151–155 (1977)

    Article  Google Scholar 

  28. Sarkar, B.R., Pan, H.: Effects of inflation and the time value of money on order quantity and allowable shortage. Int. J. Prod. Econ. 34, 65–72 (1994)

    Article  Google Scholar 

  29. Hariga, M.A.: Economic analysis of dynamic inventory models with non-stationary cost and demand. Int. J. Prod. Econ. 36, 255–266 (1994)

    Article  Google Scholar 

  30. Cheung, K.I.: A continuous review inventory model with a time discount. IIE Trans. 30, 747–757 (1998)

    Google Scholar 

  31. Chung, K.J., Liu, J., Tsai, S.F.: Inventory systems for deteriorating items taking account of time value. Eng. Opt. 27, 303–320 (1997)

    Article  Google Scholar 

  32. Chandra, M.J., Bahner, M.L.: The effects of inflation and the time value of money on some inventory systems. Int. J. Prod. Res. 23, 723–730 (1985)

    Article  Google Scholar 

  33. Sarkar, B.: A production-inventory model with probabilistic deterioration in two-echelon supply chain management. Appl. Math. Model. 37, 3138–3151 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sarkar, M., Sarkar, B.: An economic manufacturing quantity model with probabilistic deterioration in a production system. Econ. Model. 31, 245–252 (2013)

    Article  Google Scholar 

  35. Bose, S., Goswami, A., Chaudhuri, K.S.: An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting. J. Oper. Res. Soc. 31, 771–782 (1995)

    Article  MATH  Google Scholar 

  36. Dohi, T., Kaio, N., Osaki, S.: A note on optimal inventory policies taking account of time-value. RAIRO 26, 1–14 (1992)

    Article  MATH  Google Scholar 

  37. Chen, J.M.: An inventory model for deteriorating item with time proportional demand and shortages under inflation and time discounting. Int. J. Prod. Econ. 55, 21–30 (1998)

    Article  Google Scholar 

  38. Wee, H.M., Law, S.T.: Replenishment and pricing policy for deteriorating items taking into account the time-value of money. Int. J. Prod. Econ. 71, 213–220 (2001)

    Article  Google Scholar 

  39. Datta, T.K., Pal, A.K.: Effects of inflation and time-value of money on an inventory model with linear time dependent demand rate and shortages. Eur. J. Oper. Res. 52, 1–8 (1991)

    Article  Google Scholar 

  40. Bose, S., Goswami, A., Chaudhuri, K.S.: An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting. J. Oper. Res. Soc. 46, 771–782 (1995)

    Article  MATH  Google Scholar 

  41. Roy, T., Chaudhuri, K.S.: A finite time-horizon deterministic EOQ model with stock level-dependent demand, effect of inflation and time value of money with shortage in all cycles. Yugoslov J. Oper. Res. 17(2), 195–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sarkar, B., Sana, S.S., Chaudhuri, K.S.: Inventory model with finite replenishment rate, trade credit policy and price-discount offer. J. Ind. Eng. 2013, 1–18 (2013)

  43. Barzoki, M.R., Jahanbazi, M., Bijari, M.: Effects of imperfect products on lot sizing with work in process inventory. Appl. Math. Comput. 217, 8328–8336 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Pal, B., sana, S.S., Chaudhuri, K.S.: Three-layer supply chain: a production-inventory model for reworkable items. Appl. Math. Comput. 219, 530–543 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Sarkar, B., Gupta, H., Chaudhuri, K.S., Goyal, S.K.: An integrated inventory model with variable lead time. Appl. Math. Comput. 237, 650–658 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Pal, B., Sana, S.S., Chaudhuri, K.S.: A mathematical model on EPQ for stochastic demand in an imperfect production system. J. Manuf. Syst. 32, 260–270 (2013)

    Article  Google Scholar 

  47. Pal, B., Sana, S.S., Chaudhuri, K.S.: Joint pricing and ordering policy for two echelon imperfect production inventory model with two cycles. Int. J. Prod. Econ. 155, 229–238 (2014)

    Article  Google Scholar 

  48. Das Roy, M., Sana, S.S., Chaudhuri, K.S.: An optimal shipment strategy for imperfect items in a stock-out situation. Math. Comput. Model. 54, 2528–2543 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sarkar, B., Sana, S.S., Chaudhuri, K.S.: An imperfect production process for time varying demand with inflation and time value of money - An EMQ model. Expert Syst. Appl. 38, 13543–13548 (2011)

    Google Scholar 

  50. Crdenas-Barrn, L.E., Sarkar, B., Trevio-Garza, G.: Easy and improved algorithms to joint determination of the replenishment lot size and number of shipments for an EPQ model with rework. Math. Comput. Appl. 18, 3138–3151 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referees for their helpful comments and suggestions which greatly improved the content of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chakrabarty.

Appendix

Appendix

Theorem: The profit function M(Q, P) possess a maximum solution.

Proof:

$$\begin{aligned} M\left( Q, P\right)= & {} \frac{1}{\gamma } \left( pD-f\left( P\right) D-c_{0}\frac{D}{Q}- \mu c_{v}P^{\delta -1}D\right) \left( 1-e^{-\gamma T}\right) -\frac{1}{\gamma }c_{h}Q\nonumber \\&\left( 1-\frac{D}{P}\right) \left( 1-e^{-\gamma t_{2}}\right) +\frac{1}{\gamma }c_{s}Q\left( 1-\frac{D}{P}\right) \left( 1-e^{-\gamma \left( T-t_{2}\right) }\right) \nonumber \\ \frac{\partial M\left( Q, P\right) }{\partial Q}= & {} \frac{c_{0}D}{\gamma Q^{2}}\left( 1-e^{-\gamma T}\right) +\left( pD-f\left( P\right) D-c_{0}\frac{D}{Q}- \mu c_{v}P^{\delta -1}D\right) \frac{2e^{-\gamma T}}{D}\nonumber \\&-\frac{1}{\gamma }c_{h}\left( 1-\frac{D}{P}\right) \left( 1-e^{-\gamma t_{2}}\right) -\frac{1}{D}c_{h}Q\left( 1-\frac{D}{P}\right) e^{-\gamma t_{2}}+\frac{1}{\gamma }c_{s}\left( 1-\frac{D}{P}\right) \nonumber \\&\left( 1-e^{-\gamma \left( T-t_{2}\right) }\right) + \frac{1}{D}c_{s}Q\left( 1-\frac{D}{P}\right) e^{-\gamma \left( T-t_{2}\right) }=0 \end{aligned}$$
(27)

We first obtain second order derivative of M(QP) and using (36) we have

$$\begin{aligned} \frac{\partial ^{2} M\left( Q, P\right) }{\partial Q^{2}}= & {} -2\frac{c_{0}D}{\gamma Q^{3}}\left( 1-e^{-\gamma T}\right) +\frac{4c_{0}}{Q^{2}}e^{-\gamma T}-\frac{4 \gamma e^{-\gamma T}}{D^{2}}\left( pD-f\left( P\right) D-c_{0}\frac{D}{Q}\right. \\&\left. - \mu c_{v}P^{\delta -1}D\right) -\frac{2c_{h}}{D}\left( 1-\frac{D}{P}\right) e^{-\gamma t_{2}}+\frac{\gamma c_{h}Q}{D^{2}}\\&\left. \left( 1-\frac{D}{P}\right) e^{-\gamma t_{2}}+\frac{3c_{s}}{D}\left( 1-\frac{D}{P}\right) e^{-\gamma \left( T-t_{2}\right) }\right) - \frac{\gamma c_{s}Q}{D^{2}}\left( 1-\frac{D}{P}\right) e^{-\gamma \left( T-t_{2}\right) }\\= & {} -\frac{2c_{0}}{Q^{2}}\left( \frac{D}{\gamma Q}-\frac{D}{\gamma Q}e^{-\gamma T}-e^{-\gamma T}\right) -\frac{1}{D}\left( 1-\frac{D}{P}\right) \left( 2c_{h}+\frac{\gamma c_{h}Q}{D}e^{-\gamma t_{2}}-\right. \\&\left. c_{s}\left( 2+e^{-\gamma t_{2}}\right) -\frac{\gamma c_{s}Q}{D}e^{-\gamma \left( T-t_{2}\right) }-\frac{2c_{0}D}{Q^{2}\left( 1-\frac{D}{P}\right) }\right) \\= & {} -\frac{2c_{0}}{Q^{2}}X-\frac{1}{D}\left( 1-\frac{D}{P}\right) Y<0 \end{aligned}$$

provided \(X=(\frac{D}{\gamma Q}-\frac{D}{\gamma Q}e^{-\gamma T}-e^{-\gamma T})>0\) and \(Y=(2c_{h}+\frac{\gamma c_{h}Q}{D}e^{-\gamma t_{2}}-c_{s}(2+e^{-\gamma t_{2}})-\frac{\gamma c_{s}Q}{D}e^{-\gamma (T-t_{2})}-\frac{2c_{0}D}{Q^{2}(1-\frac{D}{P})})>0\)

$$\begin{aligned} \frac{\partial M\left( Q, P\right) }{\partial P}= & {} \frac{1}{\gamma }\left( -\frac{\alpha LD}{P^{\alpha +1}}+K \beta D P^{\beta -1}-\mu c_{v}\left( \delta -1\right) P^{\delta -2}D\right) \left( 1-e^{-\gamma T}\right) \nonumber \\&-\frac{c_{h}QD}{\gamma P^{2}}\left( 1-e^{-\gamma t_{2}}\right) +\frac{1}{\gamma }\frac{c_{s}QD}{P^{2}}\left( 1-e^{-\gamma \left( T-t_{2}\right) }=0\right) \end{aligned}$$
(28)
$$\begin{aligned} \frac{\partial ^{2} M(Q, P)}{\partial P^{2}}= & {} \frac{1}{\gamma }\left( -\frac{\alpha (\alpha +1) LD}{P^{\alpha +2}}-K \beta (\beta -1) D P^{\beta -2}-\mu c_{v}(\delta -1)(\delta -2)\right. \\&\left. P^{\delta -3}D\right) (1-e^{-\gamma T})-\frac{2c_{h}QD}{\gamma P^{3}}(1-e^{-\gamma t_{2}})-\frac{2c_{s}QD}{\gamma P^{3}}(1-e^{-\gamma (T-t_{2})})\\= & {} -\frac{1}{\gamma }K \beta (\beta -1) D P^{\beta -2}(1-e^{-\gamma T})-\frac{1}{\gamma }\mu c_{v}(\delta -1)(\delta -2)P^{\delta -3}D\\&(1-e^{-\gamma T})-\frac{2c_{s}QD}{\gamma P^{3}}(1-e^{-\gamma (T-t_{2})})-\frac{D}{\gamma P^{3}}\left\{ \frac{\alpha (\alpha +1)L}{P^{\alpha -1}}-\right. \\&\left. 2c_{h}Q(1-e^{-\gamma t_{2}})\right\} <0 \end{aligned}$$

provided \(B= \frac{\alpha (\alpha +1)L}{P^{\alpha -1}}-2c_{h}Q(1-e^{-\gamma t_{2}})>0\)

$$\begin{aligned} \frac{\partial ^{2} M(Q, P)}{\partial Q\partial P}= & {} -\frac{D}{\gamma P^{2}}\left\{ c_{h}(1-e^{-\gamma t_{2}})-c_{s}(1-e^{-\gamma (T-t_{2})})\right\} <0 \end{aligned}$$

provided \(C=c_{h}(1-e^{-\gamma t_{2}})-c_{s}(1-e^{-\gamma (T-t_{2})})>0\)

Hence M(QP) has a maximum with respect to Q and P if \(\frac{\partial ^{2} M(Q, P)}{\partial Q^{2}}<0\) and \(\frac{\partial ^{2} M(Q, P)}{\partial Q^{2}}\frac{\partial ^{2} M(Q, P)}{\partial P^{2}}-\frac{\partial ^{2} M(Q, P)}{\partial Q \partial P}>0\)

For our numerical data the above conditions are satisfied and therefore the profit function has a maximum solution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarty, R., Roy, T. & Chaudhuri, K.S. A Production: Inventory Model for Defective Items with Shortages Incorporating Inflation and Time Value of Money. Int. J. Appl. Comput. Math 3, 195–212 (2017). https://doi.org/10.1007/s40819-015-0099-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-015-0099-6

Keywords

Navigation