Skip to main content
Log in

Generalized Trigonometric Functions and Elementary Applications

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

We present some applications of the generalized trigonometric functions to problems in classical mechanics and to the theory of integral equations. We discuss how second and third order trigonometries are ideally suited tools to treat either damped harmonic oscillators and three dimensional rotational models. We make further progress in the generalization process by discussing the properties of Laguerre trigonometries along with the relevant link with the theory of Bessel functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Whenever necessary to emphasize the dependence on the constants \(a,\, b\) we will use the notation \(C(\theta | a,b),\, S(\theta | a,b)\).

  2. The Trig-functions in Eq. (2) are neither even nor odd under parity transformation and it is understood that \(C(-\theta | a,b)=C(\theta | a,-b)\) and \(S(-\theta | a,b) = -S(\theta | a,-b)\).

  3. It is worth noticing that \(e^{n h \theta }=C(n\theta )+h S(n\theta )=\left[ C(\theta )+h S(\theta )\right] ^{n}\), which can be exploited to derive identities mimicking those of the circular (and hyperbolic) trigonometry. Regarding the duplication formulae we find \(e^{2 h \theta }= C^2(\theta )+a S^2(\theta )+ 2h C(\theta )S(\theta )\), eventually providing the second degree trigonometric duplication formula \(C(2\theta ) = C^2(\theta )+a S^2(\theta )\), \(S(2\theta ) = 2 S(\theta )C(\theta )+b S^2(\theta )\).

  4. In the case of the ordinary imaginary unit \(\phi ^*={\varvec{i}}\pi /2\).

  5. For integer \(\nu \), Eq. (48) is nothing but a Cauchy-repeated integral.

  6. It can be expressed in terms of the \(0-th\) order modified Bessel through the identity \({}_l e(\eta )=I_0(2\sqrt{\eta })\).

References

  1. Fjelstad, P., Gal, S.G.: Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers. Adv. Appl. Clifford Algebras 11(1), 81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yamaleev, R.M.: Complex algebras on N-order polynomials and generalizations of trigonometry, oscillator model and Hamilton dynamics. Adv. Appl. Clifford Algebras 15(1), 123 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yamaleev, R.M.: Multicomplex algebras on polynomials and generalized Hamilton dynamics. J. Math. Anal. Appl. 322, 815 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babusci, D., Dattoli, G., Di Palma, E., Sabia, E.: Complex-type numbers and generalizations of the Euler identity. Adv. Appl. Clifford Algebras 22(2), 271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dattoli, G., Mari, C., Torre, A.: A simplified version of the Cayley–Hamilton theorem and exponential forms of the \(2\times 2\) and \(3\times 3\) matrices. Nuovo Cim. B 108, 61 (1993)

    Article  Google Scholar 

  6. Yamaleev, R.M.: Hyperbolic cosines and sines theorems for the triangle formed by arcs of intersecting semicircles on Euclidean Plane. J. Math. 2013, 1–10 (2013)

  7. Dattoli, G., Del Franco, M.: Hyperbolic and circular trigonometry and application to special relativity. arXiv:1002.4728 [math-ph] (2010)

  8. Yamaleev, R.M.: From generalized Clifford algebras to Nambus formulation of dynamics. Adv. Appl. Clifford Algebras 10(1), 15 (2005)

    Article  MathSciNet  Google Scholar 

  9. Dattoli, G., Migliorati, M., Ricci, P.E.: The Eisentein group and the pseudo hyperbolic function. arXiv:1010.1676 [math-ph] (2010)

  10. Ciocci, F., Dattoli, G., Renieri A., Torre, A.: Free electron lasers as insertion devices. In: Insertion Devices for Synchrotron Radiation and Free Electron Laser, pp. 237–286. World Scientific, Singapore (2000)

  11. De Zela, F.: Closed-form expressions for the matrix exponential. Symmetry 6(2), 329 (2014)

    Article  MathSciNet  Google Scholar 

  12. Babusci, D., Dattoli, G., Sabia, E.: Operational methods and Lorentz-type equations of motion. J. Phys. Math. 3, 1 (2011)

    Article  MATH  Google Scholar 

  13. Cabibbo, N.: Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531 (1963)

    Article  Google Scholar 

  14. Kobayashi, M., Maskawa, T.: CP-violation in the renormalizable theory of weakinteraction. Prog. Theor. Phys. 49, 652 (1973)

    Article  Google Scholar 

  15. Dattoli, G., Zhukovsky, K.: Quark flavour mixing and the exponential form of the Kobayashi-Maskawa matrix. Eur. Phys. J. C 50, 817 (2007)

    Article  Google Scholar 

  16. Dattoli, G., Di Palma, E.: The exponential parameterization of the quark mixing matrix. arXiv:1301.5111 [hep-ph]

  17. Dattoli, G., Di Palma, E., Sabia, E.: Cardan polynomials, Chebyshev exponents, ultra-radicals and generalized imaginary units. Adv. Appl. Clifford Algebras 25(1), 81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Penson, K.A., Blasiak, P., Horzela, A., Duchamp, G.H.E., Solomon, A.I.: Laguerre-type derivatives: Dobiński relations and combinatorial identities. J. Math. Phys. 50, 083512 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dattoli, G., Mancho, A.M., Quattromini, M., Torre, A.: Exponential operators, generalized polynomials and evolution problems. Radiat. Phys. Chem. 61, 99 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Danilo Babusci and Robert Yamaleev for their kind interest and encouragement in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Nguyen.

Appendix

Appendix

In this appendix we will clarify the role and the genesis of the composition rule of Eq. (75).

The Laguerre derivative satisfies the identity

$$\begin{aligned} {}_l\partial _\xi ^{n} = \partial _\xi ^{n}\xi ^{n}\partial _\xi ^{n} \end{aligned}$$
(79)

and, accordingly, the pseudo-shift operator \(e^{\hat{c}y {}_l\partial _x}={}_l e(y {}_l \partial _x)\) acting on a monomial \(x^n\) yields

$$\begin{aligned} {}_l e(y {}_l\partial _{x}) x^{n} = \left[ \sum _{r=0}^\infty \frac{y^r}{(r!)^2} \partial _{x}^{r} x^{r}\partial _{x}^{r}\right] x^{n} = \sum _{r=0}^{n}\frac{y^{r}}{(r!)^2}\frac{(n!)^2}{\left[ (n-r)!\right] ^2} x^{n-r} = (x\oplus _l y)^{n} \end{aligned}$$
(80)

It can now be argued that the composition of Eq. (75) can be considered as the Newton binomial associated with the algebraic structure due to the specific form of the operator \(\hat{c}^{n}\).

According to the previous identities we can also state that

$$\begin{aligned} {}_l e(y {}_l\partial _{x}) {}_l e(x)= & {} {}_l e(y) {}_l e(x) \nonumber \\ {}_l e(y {}_l\partial _{x}) {}_l e(x)= & {} {}_l e(x\oplus _l y) \end{aligned}$$
(81)

allowing the derivation of the following semi-group property of the l-exponential

$$\begin{aligned} {}_l e(y) {}_l e(x) = { }_l e(x\oplus _l y) \end{aligned}$$
(82)

In full analogy with the ordinary Euler formula we introduce the l-trigonometric (l-t)-functions through the identity

$$\begin{aligned} {}_l e({\varvec{i}}x) = {}_l c(x)+{\varvec{i}}~ {}_l s(x) \end{aligned}$$
(83)

where the l-t cosine and sine functions are specified by the series

$$\begin{aligned} {}_l c(x)= & {} \sum _{r=0}^\infty \frac{(-1)^r x^{2 r}}{[(2 r)!]^2} \nonumber \\ {}_l s(x)= & {} \sum _{r=0}^\infty \frac{(-1)^r x^{2r+1}}{[(2r+1)!]^2} \end{aligned}$$
(84)

It is easily checked that they satisfy the identities

$$\begin{aligned} {}_l\partial _x\left[ {}_l c(\alpha x)\right]= & {} -\alpha ~ {}_l s(\alpha x)\nonumber \\ {}_l\partial _x\left[ {}_l s(\alpha x)\right]= & {} \alpha ~ {}_l c(\alpha x) \end{aligned}$$
(85)

and therefore the harmonic equation

$$\begin{aligned} ({}_l\partial _x)^2\left[ {}_l c(\alpha x)\right]= & {} -\alpha ^2 {}_l c(\alpha x)\nonumber \\ ({}_l\partial _x)^2\left[ {}_l s(\alpha x)\right]= & {} -\alpha ^2 {}_l s(\alpha x) \end{aligned}$$
(86)

The use of the properties of the l-exponential function allows the derivation of the following addition theorems for the functions in Eq. (84)

$$\begin{aligned} {}_l c(x\oplus _l y)= & {} {}_l c(x) {}_l c(y)-{}_l s(x) {}_l s(y)\nonumber \\ {}_l s(x\oplus _l y)= & {} {}_l c(x) {}_l s(y)+{}_l s(x) {}_l c(y) \end{aligned}$$
(87)

The proof is given below, by observing that

$$\begin{aligned}&{}_l e({\varvec{i}}x) {}_l e({\varvec{i}}y)=\left[ {}_l c(x)+{\varvec{i}}~ {}_l s(x)\right] \left[ {}_l c(y)+{\varvec{i}}~ {}_l s(y)\right] \nonumber \\&\qquad =\left[ {}_l c(x) {}_l c(y)-{}_l s(x) {}_l s(y)\right] +{\varvec{i}}\left[ {}_l c(x) {}_l s(y)+{}_l s(x) {}_l c(y)\right] \end{aligned}$$
(88)

and since

$$\begin{aligned} {}_l e({\varvec{i}}x) {}_l e({\varvec{i}}y) = {}_l e\left( {\varvec{i}}(x\oplus _l y)\right) ={}_l c(x\oplus _l y)+{\varvec{i}}~ {}_l s(x\oplus _l y) \end{aligned}$$
(89)

we can equate real and imaginary parts to infer the identities of Eq. (87).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dattoli, G., Palma, E.D., Nguyen, F. et al. Generalized Trigonometric Functions and Elementary Applications. Int. J. Appl. Comput. Math 3, 445–458 (2017). https://doi.org/10.1007/s40819-016-0168-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0168-5

Keywords

Mathematics Subject Classification

Navigation