Skip to main content
Log in

Analysis of the Time Fractional 2-D Diffusion-Wave Equation via Moving Least Square (MLS) Approximation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the time fractional two-dimensional diffusion-wave equation defined by Caputo sense for (\(1<\alpha <2\)) is analyzed by an efficient and accurate computational method namely meshless local Petrov–Galerkin (MLPG) method which is based on the Galerkin weak form and moving least squares (MLS) approximation. We consider a general domain with Dirichlet boundary conditions further to given initial values as continuous functions. Meshless Galerkin weak form is adopted to the interior nodes while the meshless collocation technique is applied for the nodes on the boundaries of the domain. Since Dirichlet boundary condition is imposed directly therefore the general domains are also applicable easily. In MLPG method, the MLS approximation is usually used to construct shape functions which plays important rule in the convergence and stability of the method. It is proved the method is unconditionally stable in some sense. Two numerical examples are presented, one of them with the regular domain and the other one with non-regular domain, and satisfactory agreements are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  2. Samko, S., Kilbas, A., Maxitchev, O.: Integrals and Derivatives of the Fractional Order and Some of Their Applications. Nauka i Tekhnika, Minsk (1987). (in Russian)

    Google Scholar 

  3. Bhrawy, A., Dohac, E., Baleanud, D., Ezz-Eldien, S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)

  4. Heydari, M., Hooshmandasl, M., Ghaini, F.M., Cattani, C.: Wavelets method for the time fractional diffusion-wave equation. Phys. Lett. A 379, 71–76 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, K., Liu, S.: A new solution procedure for nonlinear fractional porous media equation based on a new fractional derivative. Nonlinear Sci. Lett. A 7(4), 135–140 (2016)

    Google Scholar 

  6. Sayevand, K., K, P.: Analysis of nonlinear fractional KdV equation based on He’s fractional derivative. Nonlinear Sci. Lett. A 7(3), 77–85 (2016)

    Google Scholar 

  7. Liu, F.-J., Li, Z.-B., Zhang, S., Liu, H.-Y.: He’s fractional derivative for heat conduction in a fractal medium arising in silkworm cocoon hierarchy. Therm. Sci. 19(4), 1155–1159 (2015)

    Article  Google Scholar 

  8. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Belytschko, T., Lu, Y.Y., Gu, L.: Element free Galerkin methods for static and dynamic fracture. Int. J. Solids Struct. 32, 2547–2570 (1995)

    Article  MATH  Google Scholar 

  10. Liu, G., Gu, Y.: An Introduction to Meshfree Methods and Their Programing. Springer, Berlin (2005)

    Google Scholar 

  11. Kansa, E.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127–145 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehghan, M., Shokri, A.: A numerical method for solution of the twodimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79, 700–715 (2008)

    Article  MATH  Google Scholar 

  13. Abbasbandy, S., Ghehsareh, H.R., Hashim, I.: A meshfree method for the solution of two-dimensional cubic nonlinear Schrödinger equation. Eng. Anal. Bound. Elem. 37(6), 885–898 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Parand, K., Hemami, M.: Numerical study of astrophysics equations by meshless collocation method based on compactly supported radial basis function. Int. J. Appl. Comput. Math. 1–23 (2016). doi:10.1007/s40819-016-0161-z

  15. Fu, Z.-J., Chen, W., Ling, L.: Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng. Anal. Bound. Elem. 57, 37–46 (2015)

    Article  MathSciNet  Google Scholar 

  16. Fu, Z.-J., Chen, W., Yang, H.-T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, W., Ye, L., Sun, H.: Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 59(5), 1614–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shivanian, E.: A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng. Anal. Bound. Elem. 54, 1–12 (2015)

    Article  MathSciNet  Google Scholar 

  19. Shivanian, E.: Spectral meshless radial point interpolation (smrpi) method to two-dimensional fractional telegraph equation. Math. Methods Appl. Sci. 39(7), 1820–1835 (2016)

  20. Aslefallah, M., Shivanian, E.: Nonlinear fractional integro-differential reaction–diffusion equation via radial basis functions. Eur. Phys. J. Plus 130(3), 1–9 (2015)

    Article  Google Scholar 

  21. Fatahi, H., Saberi-Nadjafi, J., Shivanian, E.: A new spectral meshless radial point interpolation (SMRPI) method for the two-dimensional fredholm integral equations on general domains with error analysis. J. Comput. Appl. Math. 294, 196–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shivanian, E.: A meshless method based on radial basis and spline interpolation for 2-D and 3-D inhomogeneous biharmonic bvps. Z. Naturforschung A 70(8), 673–682 (2015)

    Google Scholar 

  23. Abbasbandy, S., Shivanian, E.: Numerical simulation based on meshless technique to study the biological population model. Math. Sci. 10(3), 123–130 (2016)

  24. Gu, Y., Liu, G.: A boundary radial point interpolation method (BRPIM) for 2-D structural analyses. Struct. Eng. Mech. 15, 535–550 (2003)

    Article  Google Scholar 

  25. Liu, G., Yan, L., Wang, J., Gu, Y.: Point interpolation method based on local residual formulation using radial basis functions. Struct. Eng. Mech. 14, 713–732 (2002)

    Article  Google Scholar 

  26. Liu, G., Gu, Y.: A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids. J. Sound Vib. 246(1), 29–46 (2001)

    Article  Google Scholar 

  27. Dehghan, M., Ghesmati, A.: Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput. Phys. Commun. 181, 772–786 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shivanian, E.: Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng. Anal. Bound. Elem. 37(12), 1693–1702 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shivanian, E.: Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations. Ocean Eng. 89, 173–188 (2014)

    Article  Google Scholar 

  30. Shivanian, E., Khodabandehlo, H.R.: Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions. Eur. Phys. J. Plus 129(11), 1–10 (2014)

    Article  Google Scholar 

  31. Shivanian, E.: On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations. Int. J. Numer. Methods Eng. 105(2), 83–110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hosseini, V.R., Shivanian, E., Chen, W.: Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur. Phys. J. Plus 130(2), 1–21 (2015)

    Article  Google Scholar 

  33. Shivanian, E., Khodabandehlo, H.R.: Application of meshless local radial point interpolation (MLRPI) on a one-dimensional inverse heat conduction problem. Ain Shams Eng. J. 7(3), 993–1000 (2016)

  34. Shivanian, E., Rahimi, A., Hosseini, M.: Meshless local radial point interpolation to three-dimensional wave equation with neumann’s boundary conditions. Int. J. Comput. Math. 1–17 (2015). doi:10.1080/00207160.2015.1085032

  35. Hosseini, V.R., Shivanian, E., Chen, W.: Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping. J. Comput. Phys. 312, 307–332 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Atluri, S., Zhu, T.: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Atluri, S., Zhu, T.: A new meshless local Petrov–Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation. Comput. Model. Simul. Eng. 3(3), 187–196 (1998)

    Google Scholar 

  38. Atluri, S., Zhu, T.: New concepts in meshless methods. Int. J. Numer. Methods Eng. 13, 537–556 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Atluri, S., Zhu, T.: The meshless local Petrov–Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech. 25, 169–179 (2000)

    Article  MATH  Google Scholar 

  40. Dehghan, M., Mirzaei, D.: The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation. Eng. Anal. Bound. Elem. 32, 747–756 (2008)

    Article  MATH  Google Scholar 

  41. Dehghan, M., Mirzaei, D.: Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl. Numer. Math. 59, 1043–1058 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gu, Y., Liu, G.: A meshless local Petrov–Galerkin (MLPG) method for free and forced vibration analyses for solids. Comput. Mech. 27, 188–198 (2001)

    Article  MATH  Google Scholar 

  43. Shirzadi, A., Sladek, V., Sladek, J.: A local integral equation formulation to solve coupled nonlinear reaction–diffusion equations by using moving least square approximation. Eng. Anal. Bound. Elem. 37, 8–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shivanian, E.: Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng. Anal. Bound. Elem. 50, 249–257 (2015)

    Article  MathSciNet  Google Scholar 

  45. Shivanian, E., Abbasbandy, S., Alhuthali, M.S., Alsulami, H.H.: Local integration of 2-D fractional telegraph equation via moving least squares approximation. Eng. Anal. Bound. Elem. 56, 98–105 (2015)

    Article  MathSciNet  Google Scholar 

  46. Shivanian, E.: Local integration of population dynamics via moving least squares approximation. Eng. Comput. 32(2), 331–342 (2016)

    Article  Google Scholar 

  47. Hu, D., Long, S., Liu, K., Li, G.: A modified meshless local Petrov–Galerkin method to elasticity problems in computer modeling and simulation. Eng. Anal. Bound. Elem. 30, 399–404 (2006)

    Article  MATH  Google Scholar 

  48. Liu, K., Long, S., Li, G.: A simple and less-costly meshless local Petrov–Galerkin (MLPG) method for the dynamic fracture problem. Eng. Anal. Bound. Elem. 30, 72–76 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author is very grateful to two anonymous reviewers for carefully reading the paper and for their comments and suggestions which have improved the paper very much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elyas Shivanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivanian, E. Analysis of the Time Fractional 2-D Diffusion-Wave Equation via Moving Least Square (MLS) Approximation. Int. J. Appl. Comput. Math 3, 2447–2466 (2017). https://doi.org/10.1007/s40819-016-0247-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0247-7

Keywords

Navigation