Skip to main content
Log in

Electro-Magneto-Elastic Response of Laminated Composite Plate: A Finite Element Approach

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The flexural behaviour of the laminated composite plate embedded with two different smart materials (piezoelectric and magnetostrictive) and subsequent deflection suppression have been investigated in this article. The mathematical model of the laminated composite plate embedded with and without smart materials are developed using the higher-order shear deformation kinematics in conjunction with finite element steps. The plate is assumed to be subjected to the combined effect of the mechanical load, electrical potential and the magnetic field induction. The desired responses are computed numerically with the help of a homemade computer code developed in MATLAB environment in association with the present finite element formulation. The convergence and the validity of the presently computed numerical responses have been established by comparing the responses with those available numerical and analytical results. Further, the desired responses of the laminated composite structure bonded with and without functional materials are computed using the commercial finite element package (ANSYS) and compared with the present numerical results. Finally, the present higher-order model is extended to examine the static responses of the laminated composite plate embedded with piezo and magnetostrictive material by solving the wide variety of numerical examples for different design parameters. The degree of deflection suppression capability due to the smart layers has been underlined and discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alibeigloo, A., Madoliat, R.: Static analysis of cross-ply laminated plates with integrated surface piezoelectric layers using differential quadrature. Compos. Struct. 88(3), 342–353 (2009)

    Article  Google Scholar 

  2. Bhangale, R.K., Ganesan, N.: Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. Int. J. Solids Struct. 43(10), 3230–3253 (2006)

    Article  MATH  Google Scholar 

  3. Bousahla, A.A., Houari, M.S.A., Tounsi, A., Bedia, E.A.A.: A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. Int. J. Comput. Methods 11(6), 1350082 (2014). doi:10.1142/S0219876213500825

    Article  MathSciNet  MATH  Google Scholar 

  4. Bui, T.Q., Nguyen, M.N., Zhang, C.: An efficient meshfree method for vibration analysis of laminated composite plate. Comput. Mech. 48, 175–193 (2011)

    Article  MATH  Google Scholar 

  5. Bui, T.Q.: Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS. Comput. Methods Appl. Mech. Eng. 295, 470–509 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bui, T.Q., Do, T.V., Ton, L.H.T., Doan, D.H., Tanaka, S., Pham, D.T., Van Thien-An, N., Yu, T., Hirose, S.: On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory. Compos. B 92, 218–241 (2016a)

    Article  Google Scholar 

  7. Bui, T.Q., Hirose, S., Zhang, C., Rabczuk, T., Wu, C.T., Saitoh, T., Lei, J.: Extended isogeometric analysis for dynamic fracture in multiphase piezoelectric/piezomagnetic composites. Mech. Mater. 97, 135–163 (2016b)

    Article  Google Scholar 

  8. Bui, T.Q., Zhang, C.: Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM. Finite Elements Anal. Design 69, 19–36 (2013)

    Article  Google Scholar 

  9. Carrera, E., Brischetto, S., Nali, P.: Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis, vol. 1. Wiley, West Sussex (2011)

    Book  MATH  Google Scholar 

  10. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis, vol. 4. Wiley, Singapore (2003)

    Google Scholar 

  11. Dash, P., Singh, B.N.: Nonlinear free vibration of piezoelectric laminated composite plate. Finite Elem. Anal. Design 45(10), 686–694 (2009)

    Article  Google Scholar 

  12. Dash, P., Singh, B.N.: Geometrically nonlinear bending analysis of laminated composite plate. Commun. Nonlinear Sci. Numer. Simul. 15(10), 3170–3181 (2010)

    Article  Google Scholar 

  13. Draiche, K., Tounsi, A., Khalfi, Y.: A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass. Steel Compos. Struct. 17(1), 69–81 (2014)

    Article  Google Scholar 

  14. Fekrar, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R.: A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates. Meccanica 49(4), 795–810 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fekrar, S.A.A., Heireche, H., Saidi, H., Tounsi, A., Bedia, E.A.A.: An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations. Wind Struct. 22(3), 329–348 (2016)

    Article  Google Scholar 

  16. Haitao, D., Wei, C., Mingzhib, L.: Static/dynamic analysis of functionally graded and layered magneto-electro-elastic plate/pipe under Hamiltonian system. Chin. J. Aeronaut. 21(1), 35–42 (2008)

    Article  Google Scholar 

  17. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A., Bedia, E.A.A.: A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. ASCE J. Eng. Mech. 140(2), 374–383 (2014)

    Article  Google Scholar 

  18. Kar, V.R., Mahapatra, T.R., Panda, S.K.: Nonlinear flexural analysis of laminated composite flat panel under hygro-thermomechanical loading. Steel Compos. Struct. 19(4), 1011–1033 (2015)

    Article  Google Scholar 

  19. Kerur, S., Ghosh, A.: Active control of geometrically non-linear transient response of smart laminated composite plate integrated With AFC actuator and PVDF sensor. J. Intell. Mater. Syst. Struct. 22(11), 1149–1160 (2011)

    Article  MATH  Google Scholar 

  20. Kerur, S., Ghosh, A.: Active vibration control of composite plate using AFC actuator and PVDF sensor. Int. J. Struct. Stab. Dyn. 11(2), 237–255 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khdeir, A.A., Aldraihem, O.J.: Exact analysis for static response of cross ply laminated smart shells. Compos. Struct. 94(1), 92–101 (2011)

    Article  Google Scholar 

  22. Kishore, M.D.V.H., Singh, B.N., Pandit, M.K.: Nonlinear static analysis of smart laminated composite plate. Aerosp. Sci. Technol. 15(3), 224–235 (2011)

    Article  Google Scholar 

  23. Lee, S.J., Reddy, J.N., Abadi, F.R.: Transient analysis of laminated composite plates with embedded smart-material layers. Finite Elem. Anal. Design 40(5–6), 463–483 (2004)

    Article  Google Scholar 

  24. Lee, S.J., Reddy, J.N., Abadi, F.R.: Nonlinear finite element analysis of laminated composite shells with actuating layers. Finite Elem. Anal. Design 43(1), 1–21 (2006)

    Article  Google Scholar 

  25. Lei, J., Sun, P., Bui, T.Q.: Determination of fracture parameters for interface cracks in transverse isotropic magnetoelectroelastic composites. Curved Layer Struct. 2, 271–278 (2015)

    Google Scholar 

  26. Lei, J., Zhang, C., Bui, T.Q.: Transient dynamic interface crack analysis in magnetoelectroelastic bi-materials by a time-domain BEM. Eur. J. Mech. A Solids 49, 146–157 (2015)

    Article  MathSciNet  Google Scholar 

  27. Mahi, A., Bedia, E.A.A., Tounsi, A.: A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39(9), 2489–2508 (2015)

    Article  MathSciNet  Google Scholar 

  28. Moita, J.M.S., Soares, C.M.M., Soares, C.A.M.: Analyses of magneto-electro-elastic plates using a higher order finite element model. Compos. Struct. 91, 421–426 (2009)

    Article  Google Scholar 

  29. Priya, S., Yang, S.C., Maurya, D., Yan, Y.: Recent advances in piezoelectric and magnetoelectric materials phenomena. In: Srinivasan, G., Priya, S., Sun, N.X. (eds.) Composite magnetoelectrics, pp. 103–157. Woodhead Publishing, Cambridge (2015). doi:10.1016/B978-1-78242-254-9.00006-8

    Chapter  Google Scholar 

  30. Putcha, N.S., Reddy, J.N.: A refined mixed shear flexible finite element for the non-linear analysis of laminated plates. Comput. Struct. 22(4), 529–538 (1986)

    Article  MATH  Google Scholar 

  31. Reddy, J.N.: Mechanics of Laminated Composite: Plates and Shells-Theory and Analysis, vol. 2. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  32. Saravanos, D.A., Heyliger, P.R., Hopkins, D.A.: Layerwise mechanics and finite element for the dynamic analysis of Piezoelectric composite plates. Int. J. Solids Struct. 34(3), 359–378 (1997)

    Article  MATH  Google Scholar 

  33. Sartorato, M., Medeiros, R., Tita, V.: A finite element formulation for smart piezoelectric composite shells: mathematical formulation, computational analysis and experimental evaluation. Compos. Struct. 127(1), 185–198 (2015)

    Article  Google Scholar 

  34. Sirohi, J., Chopra, I.: Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 11, 246 (2000)

    Article  Google Scholar 

  35. Torres, D.A.F., Mendonça, P.T.R.: HSDT-layer wise analytical solution for rectangular piezoelectric laminated plates. Compos. Struct. 92(8), 1763–1774 (2010)

    Article  Google Scholar 

  36. Tounsi, A., Houari, M.S.A., Benyoucef, S., Bedia, E.A.A.: A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp. Sci. Technol. 24(1), 209–220 (2013)

    Article  Google Scholar 

  37. Yin, S., Yu, T., Bui, T.Q., Xia, S., Hirose, S.: A cutout isogeometric analysis for thin laminated composite plates using level sets. Compos. Struct. 127, 152–164 (2015)

    Article  Google Scholar 

  38. Yu, T., Yin, S., Bui, T.Q., Xia, S., Tanaka, S., Hirose, S.: NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method. Thin Walled Struct. 101, 141–156 (2016)

    Article  Google Scholar 

  39. Zhang, Y.X., Kim, K.S.: Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements. Compos. Struct. 72(3), 301–310 (2006)

    Article  Google Scholar 

  40. Zidi, M., Tounsi, A., Houari, M.S.A., Bedia, E.A.A., Beg, O.A.: Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory. Aerosp. Sci. Technol. 34, 24–34 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata K. Panda.

Appendix

Appendix

Linear mid-plane strain terms

$$\begin{aligned} \varepsilon _{_{xx} } ^{0}=u,_x , \quad \varepsilon _{_{yy} } ^{0}=v,_{\mathrm{y}}, \!\quad \varepsilon _{_{zz} } ^{0}=w,_z , \quad \gamma _{_{yz} } ^{0}=v,_z +\, w,_y,\! \quad \gamma _{_{xz} } ^{0}=u,_z +\, w,_x , \!\quad \gamma _{_{xy} } ^{0}=u,_y +\, v,_x \end{aligned}$$

Individual terms of matrix [B]

$$\begin{aligned}&{[}\hbox {B}]_{ 1\mathrm{x}1}={\partial /\partial x}, [\hbox {B}]_{ 1\mathrm{x}3}=1/R_{\mathrm{x}}; [\hbox {B}]_{ 2\mathrm{x}2}={ \partial /\partial y}, [\hbox {B}]_{ 2\mathrm{x}3}= -1/R_{\mathrm{y}}; [\hbox {B}]_{ 3\mathrm{x}6}=1; \\&{[}\hbox {B}]_{ 4\mathrm{x}2= }-1/R_{\mathrm{y}}, [\hbox {B}]_{4\mathrm{x}3}={ \partial /\partial y}, [\hbox {B}]_{4\mathrm{x}5}=1; [\hbox {B}]_{ 5\mathrm{x}1}=-1/R_{\mathrm{x}}, [\hbox {B}]_{ 5\mathrm{x}3}={ \partial /\partial x},\\&{[}\hbox {B}]_{ 5\mathrm{x}4}=1; [\hbox {B}]_{ 6\mathrm{x}1}={ \partial /\partial y}, [\hbox {B}]_{ 6\mathrm{x}2}={ \partial /\partial x,} [\hbox {B}]_{ 6\mathrm{x}3}=2/R_{xy}; [\hbox {B}]_{ 7\mathrm{x}4}={ \partial /\partial x},\\&{[}\hbox {B}]_{ 7\mathrm{x}6}=1/R_{\mathrm{x}}; [\hbox {B}]_{ 8\mathrm{x}5}={ \partial /\partial y},[\hbox {B}]_{ 8\mathrm{x}6}=1/R_{\mathrm{y}}; [\hbox {B}]_{ 9\mathrm{x}5}=-1/R_{\mathrm{y}}, \\&{[}\hbox {B}]_{ 9\mathrm{x}6}={ \partial /\partial y}, [\hbox {B}]_{ 9\mathrm{x}8}=2; [\hbox {B}]_{ 10\mathrm{x}4}= -1/R_{\mathrm{x},} [\hbox {B}]_{ 10\mathrm{x}6}={ \partial /\partial x}, [\hbox {B}]_{ 10\mathrm{x}7}=2; \\&{[}\hbox {B}]_{ 11\mathrm{x}4}= { \partial /\partial y}, [\hbox {B}]_{11\mathrm{x}5}= { \partial /\partial x,} [\hbox {B}]_{ 11\mathrm{x}6}=2/R_{xy}; [\hbox {B}]_{ 12\mathrm{x}7}= { \partial /\partial x;}\\&{[}\hbox {B}]_{ 13\mathrm{x}8}={ \partial /\partial y}; [\hbox {B}]_{ 14\mathrm{x}8}= -1/R_{\mathrm{y},} [\hbox {B}]_{ 14\mathrm{x}10}=3; [\hbox {B}]_{15\mathrm{x}7}= -1/R_{\mathrm{x}}, [\hbox {B}]_{ 15\mathrm{x}9 }=3; \\&{[}\hbox {B}]_{16\mathrm{x}7}={ \partial /\partial y}, [\hbox {B}]_{ 16\mathrm{x}8}= { \partial /\partial x}; [\hbox {B}]_{ 17\mathrm{x}9}={ \partial /\partial x}; [\hbox {B}]_{ 18\mathrm{x}10}= { \partial /\partial y};\\&{[}\hbox {B}]_{18\mathrm{x}10}=-1/R_{\mathrm{y}}; [\hbox {B}]_{ 20\mathrm{x}9}= -1/R_{\mathrm{x}}; [\hbox {B}]_{ 21\mathrm{x}9}={ \partial /\partial y}, [\hbox {B}]_{ 21\mathrm{x}10}={ \partial /\partial x}; \end{aligned}$$

Thickness coordinate matrix

$$\begin{aligned} \left[ {T^{L}} \right] =\left[ {{\begin{array}{lllllllllllllllllllll} 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}\\ \end{array} }} \right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, G., Panda, S.K., Mahapatra, T.R. et al. Electro-Magneto-Elastic Response of Laminated Composite Plate: A Finite Element Approach. Int. J. Appl. Comput. Math 3, 2573–2592 (2017). https://doi.org/10.1007/s40819-016-0256-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0256-6

Keywords

Navigation