Skip to main content
Log in

Cattaneo–Christov Nanofluid Flow and Heat Transfer with Variable Properties Over a Vertical Cone in a Porous Medium

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present an analysis of convective boundary layer flow and heat transfer in a Cattaneo–Christov Casson nanofluid around a vertical cone placed in a porous medium. The nanofluid transport properties such as the viscosity, thermal conductivity, and Brownian diffusion are dependent on concentration and are considered to have a linear dependence on the local nanoparticle volume fraction. The mass flux at the boundary is assumed to be zero. The coupled conservation equations are solved numerically using the spectral quasi-linearization method. Analysis showed, among other findings, that thermal and concentration relaxation parameters decrease with the temperature and concentration profiles respectively, while the Brownian motion and thermophoresis parameters reduce the rate of heat transfer across the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fourier, J.B.J.: Thorie Analytique De La Chaleur. F. Didot, Paris (1822)

  2. Cattaneo, C.: Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 3(83), 101 (1948)

    MATH  Google Scholar 

  3. Christov, C.I.: On frame indifferent formulation of the Maxwell Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36, 481–486 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Straughan, B.: Thermal convection with the Cattaneo–Christov model. Int. J. Heat Mass Transf. 53, 95–98 (2010)

    Article  MATH  Google Scholar 

  5. Tibullo, V., Zampoli, V.: A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech. Res. Commun. 38, 77–79 (2011)

    Article  MATH  Google Scholar 

  6. Haddad, S.A.M.: Thermal instability in Brinkman porous media with Cattaneo–Christov heat flux. Int. J. Heat Mass Transf. 68, 659–668 (2014)

    Article  Google Scholar 

  7. Han, S., Zheng, L., Li, C., Zhang, X.: Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Appl. Math. Lett. 38, 87–93 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mustafa, M.: Cattaneo–Christov heat flux model for rotating flow and heat transfer of upperconvected Maxwell fluid. AIP Adv. 5, 047109 (2015)

    Article  Google Scholar 

  9. Khan, J.A., Mustafa, M., Hayat, T., Alsaedi, A.: Numerical study of Cattaneo–Christov heat flux model for viscoelastic flow due to an exponentially stretching surface. PLoS ONE 10(9), e0137363 (2015). doi:10.1371/journal.pone.0137363

    Article  Google Scholar 

  10. Sui, J., Zheng, L., Zhang, X.: Boundary layer heat and mass transfer with Cattaneo–Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. Int. J. Therm. Sci. 104, 461–468 (2016)

    Article  Google Scholar 

  11. Hayat, T., Khan, M.I., Farooq, M., Alsaedi, A., Waqas, M., Yasmeen, T.: Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 99, 702–710 (2016)

    Article  Google Scholar 

  12. Hayat, T., Khan, M.I., Farooq, M., Yasmeen, T., Alsaedi, A.: Stagnation point flow with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions. J. Mol. Liq. 220, 49–55 (2016)

    Article  Google Scholar 

  13. Malik, R., Khan, M., Mushtaq, M.: Cattaneo–Christov heat flux model for Sisko fluid flow past a permeable non-linearly stretching cylinder. J. Mol. Liq. 222, 430–434 (2016)

    Article  Google Scholar 

  14. Nadeem, S., Muhammad, N.: Impact of stratification and Cattaneo–Christov heat flux in the flow saturated with porous medium. J. Mol. Liq. 224, 423–430 (2016)

    Article  Google Scholar 

  15. Hayat, T., Muhammad, T., Alsaedi, A., Ahmad, B.: Three-dimensional flow of nanofluid with Cattaneo–Christov double diffusion. Results Phys. 6, 897–903 (2016)

    Article  Google Scholar 

  16. Kumar, K.A., Reddy, J.V.R., Sugunamma, V., Sandeep, N.: Magnetohydrodynamic Cattaneo–Christov flow past a cone and a wedge with variable heat source/sink. Alex. Eng. J. (2017). doi:10.1016/j.aej.2016.11.013

  17. Hayat, T., Khan, M.I., Farooq, M., Alsaedi, A., Khan, M.I.: Thermally stratified stretching flow with Cattaneo–Christov heat flux. Int. J. Heat Mass Transf. 106, 289–294 (2017)

    Article  Google Scholar 

  18. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  19. Khan, W.A., Pop, I.: Boundary layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  20. Noghrehabadi, A., Pourrajab, R., Ghalambaz, M.: Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int. J. Therm. Sci. 54, 253–261 (2012)

    Article  Google Scholar 

  21. Rana, P., Bhargava, R.: Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study. Commun. Nolinear Sci. Numer. Simulat. 17, 212–226 (2012)

    Article  MathSciNet  Google Scholar 

  22. Makinde, O.D., Khan, W.A., Khan, Z.H.: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 62, 526–533 (2013)

    Article  Google Scholar 

  23. Haroun, N.A., Sibanda, P., Mondal, S., Motsa, S.S.: On unsteady MHD mixed convection in a nanofluid due to a stretching/shrinking surface with suction/injection using the spectral relaxation method. Bound. Value Probl. 1, 1–17 (2015). doi:10.1186/s13661-015-0289-5

    MATH  MathSciNet  Google Scholar 

  24. Kuznetsov, A.V., Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  25. Kuznetsov, A.V., Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int. J. Therm. Sci. 77, 126–129 (2014)

    Article  Google Scholar 

  26. Malik, M.Y., Naseer, M., Nadeem, S., Rehman, A.: The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder. Appl. Nanosci. 4, 869–873 (2014). doi:10.1007/s13204-013-0267-0

    Article  Google Scholar 

  27. Nadeem, S., Mehmood, R., Akbar, N.S.: Optimized analytical solution for oblique flow of a Casson-nano fluid with convective boundary conditions. Int. J. Therm. Sci. 78, 90–100 (2014)

    Article  Google Scholar 

  28. Haq, U.I.R., Nadeem, S., Khan, Z.H., Okedayo, T.G.: Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet. Cent. Eur. J. Phys. 12, 862–871 (2014). doi:10.2478/s11534-014-0522-3

    Google Scholar 

  29. Nadeem, S., Haq, R.U., Akbar, N.S.: MHD three-dimensional boundary layer flow of casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Trans. Nanotechnol. 13, 109–115 (2014)

    Article  Google Scholar 

  30. Abolbashari, M.H., Freidoonimehr, N., Nazari, F., Rashidi, M.M.: Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface. Adv. Powder Technol. 26, 542–552 (2015)

    Article  Google Scholar 

  31. Oyelakin, I.S., Sabyasachi, M., Sibanda, P.: Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions. Alex. Eng. J. 55(2), 1025–1035 (2016)

    Article  Google Scholar 

  32. Kumari, M.: Effect of variable viscosity on non-Darcy free or mixed convection flow on a horizontal surface in a saturated porous medium. Int. Commun. Heat Mass Tansf. 28(5), 723–732 (2001)

    Article  Google Scholar 

  33. Abu-Nada, E., Masoud, Z., Oztop, H.F., Campo, A.: Effect of nanofluid variable properties on natural convection in enclosures. Int. J. Therm. Sci. 49(3), 479–491 (2010)

    Article  Google Scholar 

  34. Hossain, M.A., Munir, M.S., Pop, I.: Natural convection flow of viscous fluid with viscosity inversely proportional to linear function of temperature from a vertical cone. Int. J. Therm. Sci. 40, 366–371 (2001)

    Article  Google Scholar 

  35. Chin, K.E., Nazar, R., Arifin, N.M., Pop, I.: Effect of variable viscosity on mixed convection boundary layer flow over a vertical surface embedded in a porous medium. Int. Commun. Heat Mass Transf. 34, 464–473 (2007)

    Article  Google Scholar 

  36. Prasad, K.V., Dulal, P.V., Umesh, N.S., Rao, P.: The effect of variable viscosity on MHD viscoelastic fluid flow and heat transfer over a stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 15, 331–344 (2010)

    Article  MATH  Google Scholar 

  37. Shit, G.C., Haldar, R.: Effects of thermal radiation on MHD viscous fluid flow and heat transfer over nonlinear shrinking porous sheet. Appl. Math. Mech. 32, 677–688 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Nadeem, S., Haq, R.U., Akbar, N.S., Khan, Z.H.: MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alex. Eng. J. 52, 577–582 (2013)

    Article  Google Scholar 

  39. Makanda, G., Shaw, S., Sibanda, P.: Diffusion of chemically reactive species in Casson fluid flow over an unsteady stretching surface in porous medium in the presence of a magnetic field. Math. Probl. Eng. 1–10. Article ID 724596 (2014)

  40. Noghrehabadi, A., Behseresht, A.: Flow and heat transfer affected by variable properties of nanofluids in natural convection over a vertical cone in porous media. Comput. Fluids 88, 313–325 (2013)

    Article  MathSciNet  Google Scholar 

  41. Amirsom, N.A., Uddin, M.J., Ismail, A.I.: Three dimensional stagnation point flow of bionanofluid with variable transport properties. Alex. Eng. J. 55, 1983–1993 (2016)

    Article  Google Scholar 

  42. Nandy, S.K.: Analytical Solution of MHD Stagnation-Point flow and heat transfer of Casson fluid over a stretching sheet with partial slip. ISRN Thermo. Article ID 108264 (2013). doi:10.1155/2013/108264

  43. Bellman, R.E., Kalaba, R.E.: Quasilinearization and nonlinear boundary-value problems. In: Modern Analytic and Computational Methods in Science and Mathematics, vol. 3. American Elsevier Publishing Company, New York (1965)

  44. Motsa, S.S., Dlamini, P.G., Khumalo, M.: Spectral relaxation method and spectral quasilinearization method for solving unsteady boundary layer flow problems. Adv. Math. Phys. Article ID 341964 (2014). doi:10.1155/2014/341964

  45. Motsa, S.S., Awad, F.G., Makukula, Z.G., Sibanda, P.: The spectral homotopy analysis method extended to systems of partial differential equations. Abstact Appl. Anal. Article ID 241594 (2014). doi:10.1155/2014/241594

  46. Motsa, S.S.: A new spectral local linearization method for nonlinear boundary layer flow problems. J. Appl. Math. Article ID 423628 (2013). doi:10.1155/2013/423628

  47. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyelakin, I.S., Mondal, S. & Sibanda, P. Cattaneo–Christov Nanofluid Flow and Heat Transfer with Variable Properties Over a Vertical Cone in a Porous Medium. Int. J. Appl. Comput. Math 3 (Suppl 1), 1019–1034 (2017). https://doi.org/10.1007/s40819-017-0396-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0396-3

Keywords

Navigation