Skip to main content
Log in

The Approximate Solution of Nonlinear Integral Equations with the RH Wavelet Bases in a Complex Plane

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This study has been conducted to calculate the one-dimensional nonlinear Volterra–Fredholm and mixed Volterra–Fredholm integral equation of second kind in a complex plane, regarding the use of the wavelet. As far as we are aware, there have been no studies conducted so far to solve this kind of integral equation in the complex plane. The main feature of this method is that, it approximates the integral equations without solving any linear or algebra systems. In “Approximation of the Solutions with RH Functions” section, the integral operator for the RH wavelet and its use will be presented in our numerical methods. “Error Analysis” section, will discuss about the unique solution of the mentioned problems. Furthermore, an upper bound for the error analysis will be given. Finally, some problem examples and their solution will be proposed in “Numerical Examples” section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kwok, Y.K.: Applied Complex Variables for Scientists and Engineers, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  2. Burton, D.M.: The History of Mathematics. McGraw-Hill, New York. ISBN 978-0-07-009465-9 (1995)

  3. Krantz, S.G.: A Guide to Complex Variables. Dolciani, vol. 1, The MAA Guides. ISBN: 978-0-88385-338–2 (2007)

  4. Alipour, M., Baleanu, D., Babaei, F.: Hybrid Bernstein block-pulse functions method for second kind integral equations with convergence analysis. Abstr. Appl. Anal. 2014, 623763 (2014). https://doi.org/10.1155/2014/623763

  5. Alipour, M., Baleanu, D., Karimi, K.: Spectral method based on Bernstein polynomials for coupled system of Fredholm integral equations. Appl. Math. Comput. 15(2), 212–219 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Hafez, R.M., Doha, E.H., Bhrawy, A.H., Baleanu, D.: Numerical solution of two-dimensional mixed Volterra–Fredholm integral equations via Bernoulli collocation method. Rom. J. Phys. 62, 111 (2017)

    Google Scholar 

  7. Erfanian, M., Gachpazan, M., Kosari, S.: A new method for solving of Darboux problem with Haar Wavelet. Sociedad Espaola de Matemtica Aplicada Journal, SeMa J. https://doi.org/10.1007/s40324-016-0095-8 (2017) (Springer)

  8. Erfanian, M., Gachpazan, M.: A new method for solving of telegraph equation with Haar wavelet. Int. J. Math. Comput. Sci. 3(1), 6–10 (2016)

    Google Scholar 

  9. Erfanian, M., Akrami, A.: Using of two dimensional Haar wavelet for solving of two dimensional nonlinear Fredholm integral equation. Int. J. Appl. Phys. Sci. 3(3), 55–60 (2017)

    Google Scholar 

  10. Erfanian, M., Akrami, A.: Solving of two dimensional nonlinear mixed Volterra–Fredholm Hammerstein integral equation 2D Haar wavelets. Math. Sci. Int. Res. J. 6(1), 18–21 (2017)

  11. Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  12. Erfanian, M., Gachpazan, M.: Rationalized Haar wavelet bases to approximate solution of nonlinear Fredholm integral equations with error analysis. Appl. Math. Comput. 265, 304–312 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erfanian, M., Gachpazan, M., Beiglo, H.: Solving mixed Fredholm–Volterra integral equations by using the operational matrix of RH wavelets. Sociedad Espaola de Matemtica Aplicada Journal SeMa J 69, 25–36 (2015). (Springer)

    MathSciNet  MATH  Google Scholar 

  14. Erfanian, M., Gachpazan, M., Beiglo, H.: A new sequential approach for solving the integro-differential equation via Haar wavelet bases. Comput. Math. Math. Phys. 57(2), 297–305 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Erfanian, M., Gachpazan, M., Beiglo, H.: RH wavelet bases to approximate solution of nonlinear Volterra–Fredholm–Hammerstein integral equations with error analysis. Proc. IAM 4(1), 70–82 (2015)

    MATH  Google Scholar 

  16. Stechkin, S.B., Ul’yanov, P.L.: Sequences of convergence for series. Trudy Mat. Inst. Steklov. 86, 3–83 (1965)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Erfanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erfanian, M. The Approximate Solution of Nonlinear Integral Equations with the RH Wavelet Bases in a Complex Plane. Int. J. Appl. Comput. Math 4, 31 (2018). https://doi.org/10.1007/s40819-017-0465-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-017-0465-7

Keywords

Mathematics Subject Classification

Navigation