Skip to main content
Log in

On the Convergence, Dynamics and Applications of a New Class of Nonlinear System Solvers

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a uni-parametric class of third-order iterative algorithms for solving systems of nonlinear equations is proposed. The local convergence of the suggested schemes is studied using generalized Lipschitz-type condition on the first-order Fréchet derivative. Furthermore, we analyze the numerical stability of the new methods applying complex dynamics tool. The nonlinear systems related to the equation of molecular interaction, a boundary value problem, the integral equation from Chandrasekhar’s work, etc. are discussed. The most interesting fact about the proposed third-order family is that it generates a super convergent scheme (for \(\gamma =2\)) for solving quadratic nonlinear systems (QNS). This particular method produces much better results for QNS in comparison with other third-order schemes. Also, it is observed that the approximate computational order of convergence (ACOC) of this scheme (for \(\gamma =2\)) is approximately four (3.99–4.00) while solving QNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ray, S.S.: Numerical Analysis with Algorithms and Programming. CRC Press, New York (2016)

    MATH  Google Scholar 

  2. Rach, R.C., Duan, J.S., Wazwaz, A.M.: Solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. J. Math. Chem. 52(1), 255–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Singh, R., Nelakanti, G., Kumar, J.: A new efficient technique for solving two-point boundary value problems for integro-differential equations. J. Math. Chem. 52(8), 2030–2051 (2014). https://doi.org/10.1007/s10910-014-0363-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Maleknejad, K., Alizadeh, M.: An efficient numerical scheme for solving Hammerstein integral equation arisen in chemical phenomenon. Proc. Comput. Sci. 3, 361–364 (2011)

    Article  Google Scholar 

  5. Mahalakshmi, M., Hariharan, G., Kannan, K.: The wavelet methods to linear and nonlinear reaction–diffusion model arising in mathematical chemistry. J. Math. Chem. 51, 2361–2385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Logrado, P.G., Vianna, J.D.M.: Partitioning technique procedure revisited: formalism and first application to atomic problems. J. Math. Chem. 22, 107–116 (1997)

    Article  Google Scholar 

  7. Jesudason, C.G.: Numerical nonlinear analysis: differential methods and optimization applied to chemical reaction rate determination. J. Math. Chem. 49, 1384–1415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960)

    MATH  Google Scholar 

  9. Frontini, M., Sormani, E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations. Appl. Math. Comput. 149, 771–782 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Darvishi, M.T., Barati, A.: A third-order Newton-type method to solve systems of nonlinear equations. Appl. Math. Comput. 187, 630–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Noor, M.A., Waseem, M.: Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 57, 101–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nishani, H.P.S., Weerakoon, S., Fernando, T.G.I., Liyanage, M.: Weerakoon-Fernando method with accelerated third-order convergence for systems of nonlinear equations. Int. J. Math. Model. Numer. Optim. 8(3), 287–304 (2018)

    Google Scholar 

  14. Hueso, J.L., Martínez, E., Teruel, C.: Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems. J. Comput. Appl. Math. 275, 412–410 (2015). https://doi.org/10.1016/j.cam.2017.02.012

    Article  MathSciNet  MATH  Google Scholar 

  15. Sharma, J.R., Guna, R.K., Sharma, R.: An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62, 307–323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sharma, J.R., Guna, R.K., Sharma, R.: Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo 51, 193–210 (2014). https://doi.org/10.1007/s10092-013-0097-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Cordero, A., Feng, L., Magreñán, A., Torregrosa, J.R.: A new fourth-order family for solving nonlinear problems and its dynamics. J. Math. Chem. 53, 893–910 (2015). https://doi.org/10.1007/s10910-014-0464-4

    Article  MathSciNet  MATH  Google Scholar 

  18. Argyros, I.K., Magreñán, Á.A.: On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252(1), 336–346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khan, W.A., Noor, K.I., Bhatti, K., Ansari, F.A.: A new fourth order Newton-type method for solution of system of nonlinear equations. Appl. Math. Comput. 270, 724–730 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Petković, M., Neta, B., Petković, L., Dz̃uníc, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, Amsterdam (2012)

  21. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Babajee, D.K.R., Cordero, A., Soleymani, F., Torregrosa, J.R.: On a novel fourth-order algorithm for solving systems of nonlinear equations. J. Appl. Math. Volume 2012: Article ID 165452 (2012). https://doi.org/10.1155/2012/165452

  23. Jarratt, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966)

    Article  MATH  Google Scholar 

  24. Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A modified Newton Jarratt’s composition. Numer. Algorithms 55, 87–99 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Argyros, I.K., Magreñán, Á.A.: A study on the local convergence and the dynamics of Chebyshev–Halley-type methods free from second derivative. Numer. Algorithms 71(1), 1–23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Argyros, I.K., Cho, Y.J., George, S.: Local convergence for some third order iterative methods under weak conditions. J. Korean Math. Soc. 53(4), 781–793 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Argyros, I.K., González, D.: Local convergence for an improved Jarratt-type method in Banach space. Int. J. Interact. Multimed. Artif. Intell. 3(Special Issue on Teaching Mathematics Using New and Classic Tools), 20–25 (2015)

  28. Argyros, I.K., Magreñán, Á.A.: On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252(1), 336–346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Amat, S., Busquier, S., Magreñán, Á.: Reducing chaos and bifurcations in Newton-type methods. Abstr. Appl. Anal. Volume 2013: Article ID 726701, 10 (2013). https://doi.org/10.1155/2013/726701

  30. Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. Aequ. Math. 69(3), 212–223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Amat, S., Busquier, S., Plaza, S.: Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366(1), 24–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cordero, A., Guasp, L., Torregrosa, J.R.: Choosing the most stable members of Kou’s family of iterative methods. J. Comput. Appl. Math. 330, 759–769 (2017). https://doi.org/10.1016/j.cam.2017.02.012

    Article  MathSciNet  MATH  Google Scholar 

  34. Cordero, A., Magreñán, A., Quemada, C., Torregrosa, J.R.: Stability study of eighth-order iterative methods for solving nonlinear equations. J. Comput. Appl. Math. 291, 348–357 (2015). https://doi.org/10.1016/j.cam.2015.01.006

    Article  MathSciNet  MATH  Google Scholar 

  35. Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Dynamics of iterative families with memory based on weight functions procedure. J. Comput. Appl. Math. (2018). https://doi.org/10.1016/j.cam.2018.01.019

    Article  MATH  Google Scholar 

  36. Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 7023–7035 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chun, C., Lee, M.Y., Neta, B., Dz̃uníc, J.: On optimal fourth-order iterative methods free from second derivative and their dynamics. Appl. Math. Comput. 218, 6427–6438 (2012)

  38. Magreñán, Á.A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cordero, A., Torregrosa, J.R., Vindel, P.: Dynamics of a family of Chebyshev–Halley type methods. Appl. Math. Comput. 219, 8568–8583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Magreñán, Á.A.: Estudio de la dinámica delmétodo de Newton amortiguado. Servicio de Publicaciones, Universidad de La Rioja (2013). http://dialnet.unirioja.es/servlet/tesis?codigo=38821

  41. Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. Article ID 780153 (2013)

  43. Argyros, I.K.: Convergence and Application of Newton-Type Iterations. Springer, New York (2008)

    MATH  Google Scholar 

  44. Argyros, I.K., Hilout, S.: Computational Methods in Nonlinear Analysis. World Scientific Publishing House, New Jersey (2013)

    Book  MATH  Google Scholar 

  45. Rall, L.B.: Computational Solution of Nonlinear Operator Equations. Robert E. Krieger Publishing Company Inc., New York (1969)

    MATH  Google Scholar 

  46. Traub, J.F.: Iterative Methods for Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  47. Sharma, D., Parhi, S.K.: Extending the Applicability of a Newton–Simpson–Like Method. Int. J. Appl. Comput. Math. 6 (3), Article number: 79 (2020). https://doi.org/10.1007/s40819-020-00832-3

  48. Sharma, D., Parhi, S.K.: Local Convergence and Complex Dynamics of a Uni–parametric Family of Iterative Schemes. Int. J. Appl. Comput. Math. 6 (3), Article number: 83 (2020). https://doi.org/10.1007/s40819-020-00841-2

  49. Sharma, D., Parhi, S.K.: On the local convergence of a third–order iterative scheme in Banach spaces. Rend. Circ. Mat. Palermo, II. Ser. (2020). https://doi.org/10.1007/s12215-020-00500-x

  50. Sharma, D., Parhi, S.K.: Complex dynamics of a sixth and seventh order family of root finding methods. SeMA J. 77 (3), 339–349 (2020). https://doi.org/10.1007/s40324-020-00223-0

Download references

Acknowledgements

The second author would like to thank University Grants Commission (UGC) of India for the financial support (ID: NOV2017-402662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., Sharma, D., Parhi, S.K. et al. On the Convergence, Dynamics and Applications of a New Class of Nonlinear System Solvers. Int. J. Appl. Comput. Math 6, 142 (2020). https://doi.org/10.1007/s40819-020-00893-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00893-4

Keywords

Mathematics Subject Classification

Navigation