Skip to main content
Log in

Acid–base equilibria of amino acids: microscopic and macroscopic acidity constants

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

A Correction to this article was published on 13 March 2019

This article has been updated

Abstract

A short introduction to the notation of microscopic and macroscopic acidity constants of amino acids is given. The historical pathways are discussed, which led to the contemporary understanding of the acid base reactions of amino acids and their zwitterionic nature in solutions at the isoelectric point. This text is for undergraduate studies of analytical chemistry and biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reproduced from [11]

Fig. 7

(Courtesy of M. Vik, Technical University Liberec)

Fig. 8

(Copyright Morten J. Bjerrum, reprinted from [16])

Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

  • 13 March 2019

    We regret the misprint of two chemical equations in the original article.

Notes

  1. Zwitter‘is German for hermaphrodite.

  2. Terrell Leslie Hill (Oakland, USA, Dec 19, 1917–Eugene, USA, Jan. 23, 2014) was a theoretical physicist, physical chemist and chemical biologist.

References

  1. IUPAC (1997) Compendium of chemical terminology, 2nd ed. (the "Gold Book"). Blackwell Scientific Publications, Oxford. Compiled by A. D. McNaught and A. Wilkinson. XML on-line corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins

  2. Garrett RH, Grisham ChM (2013) Biochemistry. 5th edn, Brooks/Cole CENGAGE Learning

  3. Mahler HR, Cordes EH (1966) Biological chemistry. Harper Row, London

    Google Scholar 

  4. Mazák K, Noszál B (2016) J Pharm Biomed Anal 130:390–403

    Article  Google Scholar 

  5. Shamel A, Saghiri A, Jaberi F, Faraajtabar A, Mofidi F, Khorrami SA, Gharib F (2012) J Solut Chem 41:1020–1032

    Article  CAS  Google Scholar 

  6. Burgot JL (2012) Ionic equilibria in analytical chemistry. Springer, New York

    Book  Google Scholar 

  7. Westermeier R, Görg A (2018) Electrophoretic techniques. In: F Lottspeich, J Engels (eds) Bioanalytics. Analytical methods and concepts in biochemistry and molecular biology. Wiley-VCH, Weinheim, pp 259–263

    Google Scholar 

  8. Bredig G (1894) Z physik Chem (Leipzig) 13U:191–288

    Google Scholar 

  9. Kuhn W (1962) Chem Ber 95:CLVII–LXIII

    Google Scholar 

  10. Küster FW (1897) Z anorg Chem 13:127–150

    Article  Google Scholar 

  11. Scholz F (2012) Küster, Friedrich Wilhelm. In: Bard AJ, Inzelt G, F. Scholz (eds) Electrochemical dictionary, 2nd edn. Springer, Berlin, p 543

    Google Scholar 

  12. Tarbell DS (1990) J Chem Educ 67:7–8

    Article  CAS  Google Scholar 

  13. Adams EQ (1916) J Amer Chem Soc 38:1503–1510

    Article  CAS  Google Scholar 

  14. Bjerrum N (1923) Z physik Chem (Leipzig) 104:147–173

    CAS  Google Scholar 

  15. Kahlert H, Scholz F (2013) Acid–base diagrams. Springer, Berlin

    Book  Google Scholar 

  16. Scholz F (2012) Bjerrum, Niels Janniksen. In: Bard AJ, Inzelt G F. Scholz (eds) Electrochemical dictionary, 2nd edn, Springer, Berlin, p 73

  17. Benesch RE, Benesch R (1955) J Am Chem Soc 77:5877–5881

    Article  CAS  Google Scholar 

  18. Benesch R, Benesch RE (1967) Biochem Biophys Res Commun 26:162–167

    Article  CAS  Google Scholar 

  19. Clement GE, Hartz TP (1971) J Chem Educ 48:395–397

    Article  Google Scholar 

  20. Rabenstein DL, Sayer TL (1976) Anal Chem 48:1141–1146

    Article  CAS  Google Scholar 

  21. Sayer TL, Rabenstein DL (1976) Can J Chem 54:3392–3400

    Article  CAS  Google Scholar 

  22. Szakács Z, Kraszni M, Noszál B (2004) Anal Bioanal Chem 378:1428–1448

    Article  Google Scholar 

  23. Szakács Z, Noszál B (1999) J Math Chem 26:139–155

    Article  Google Scholar 

  24. Ullmann GM (2003) J Phys Chem B 107:1263–1271

    Article  CAS  Google Scholar 

  25. Onufriev A, Case DA, Ullmann GM (2001) Biochemistry 40:3413–3419

    Article  CAS  Google Scholar 

  26. Edsall JT, Blanchard MH (1933) J Am Chem Soc 55:2337–2353

    Article  CAS  Google Scholar 

  27. Edsall JT (1936) J Phys Chem 4:1–8

    Article  CAS  Google Scholar 

  28. Cohn EJ, Edsall JT (1943) Proteins, amino acids and peptides as ions and dipolar ions. Reinhold Publishing Corp, New York

    Book  Google Scholar 

  29. Chamberlin RV, Eaton WA (2015) Terrell L. Hill. Biographical memoires. Natl Acad Sci USA

  30. Hill TL (1944) J Phys Chem 48:101–111

    Article  CAS  Google Scholar 

  31. Edsall JT (2003) Biophys Chem 100:(2003) 9–28

    Article  CAS  Google Scholar 

  32. Gurd FRN, Richards FM (2003) Biophys Chem 100:49–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Scholz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholz, F., Kahlert, H. Acid–base equilibria of amino acids: microscopic and macroscopic acidity constants. ChemTexts 4, 6 (2018). https://doi.org/10.1007/s40828-018-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-018-0060-5

Keywords

Navigation