Skip to main content
Erschienen in: Shape Memory and Superelasticity 1/2019

18.01.2019 | SPECIAL ISSUE: HTSMA 2018, INVITED PAPER HTSMA

Tailoring the Microstructure in Polycrystalline Co–Ni–Ga High-Temperature Shape Memory Alloys by Hot Extrusion

verfasst von: E. Karsten, G. Gerstein, O. Golovko, A. Dalinger, C. Lauhoff, P. Krooss, T. Niendorf, A. Samsonenko, H. J. Maier

Erschienen in: Shape Memory and Superelasticity | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Co–Ni–Ga alloys represent a new class of promising high-temperature shape memory alloys allowing realization of functional components for applications at elevated temperatures. Single crystals show a fully reversible pseudoelastic response at temperatures up to 500 °C. However, for most industrial applications, the application of polycrystalline material is needed. Polycrystalline Co–Ni–Ga alloys suffer from the anisotropic properties inherent to shape memory alloys, i.e., a strong orientation dependence of transformation strains, and therefore, are prone to intergranular fracture. This drawback can be curtailed by using appropriately textured material with a favorable grain-boundary orientation distribution. The current study discusses the impact of a hot-extrusion process on microstructural evolution and functional properties of polycrystalline Co–Ni–Ga high-temperature shape memory alloys paving the way to their robust application.
Literatur
1.
Zurück zum Zitat Otsuka K, Waymann CM (1998) Shape memory materials. University Press, Cambridge Otsuka K, Waymann CM (1998) Shape memory materials. University Press, Cambridge
2.
Zurück zum Zitat Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef
3.
Zurück zum Zitat Morgan NB (2004) Medical shape memory alloy applications - the market and its products. Mater Sci Eng, A 378:16–23CrossRef Morgan NB (2004) Medical shape memory alloy applications - the market and its products. Mater Sci Eng, A 378:16–23CrossRef
4.
Zurück zum Zitat Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, LLC Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, LLC
5.
Zurück zum Zitat Duerig TW, Melton KN, Stockel D, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, Oxford Duerig TW, Melton KN, Stockel D, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, Oxford
6.
Zurück zum Zitat Funakubo H (1987) Shape memory alloys. Gordon and Breach, New York Funakubo H (1987) Shape memory alloys. Gordon and Breach, New York
7.
Zurück zum Zitat Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef
8.
Zurück zum Zitat Liu J, Xie H, Huo Y, Zheng H, Li J (2006) Microstructure evolution in CoNiGa shape memory alloys. J Alloy Compd 420:145–157CrossRef Liu J, Xie H, Huo Y, Zheng H, Li J (2006) Microstructure evolution in CoNiGa shape memory alloys. J Alloy Compd 420:145–157CrossRef
9.
Zurück zum Zitat Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2010) High-temperature in situ microscopy during stress-induced phase transformations in Co49Ni21Ga30 shape memory alloy single crystals. Int J Mater Res 101(12):1–11CrossRef Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2010) High-temperature in situ microscopy during stress-induced phase transformations in Co49Ni21Ga30 shape memory alloy single crystals. Int J Mater Res 101(12):1–11CrossRef
10.
Zurück zum Zitat Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2006) Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scripta Mater 55:663–666CrossRef Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2006) Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scripta Mater 55:663–666CrossRef
11.
Zurück zum Zitat Dadda J, Maier HJ, Niklasch D, Karaman I, Karaca HE, Chumlyakov YI (2008) Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall Mater Trans A 39:2026–2039CrossRef Dadda J, Maier HJ, Niklasch D, Karaman I, Karaca HE, Chumlyakov YI (2008) Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall Mater Trans A 39:2026–2039CrossRef
12.
Zurück zum Zitat Niendorf T, Krooß P, Chumlyakov Y, Maier HJ (2015) Martensite aging—avenue to new high temperature shape memory alloys. Acta Mater 89:298–304CrossRef Niendorf T, Krooß P, Chumlyakov Y, Maier HJ (2015) Martensite aging—avenue to new high temperature shape memory alloys. Acta Mater 89:298–304CrossRef
13.
Zurück zum Zitat Dadda J, Maier HJ, Karaman I, Chumlyakov YI (2009) Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Mater 57:6123–6134CrossRef Dadda J, Maier HJ, Karaman I, Chumlyakov YI (2009) Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Mater 57:6123–6134CrossRef
14.
Zurück zum Zitat Dadda J, Canadinc D, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2007) Stress-strain-temperature behaviour of [001] single crystals of Co49Ni21Ga30 ferromagnetic shape memory alloys uder compression. Philos Mag 87(16):2313–2322CrossRef Dadda J, Canadinc D, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2007) Stress-strain-temperature behaviour of [001] single crystals of Co49Ni21Ga30 ferromagnetic shape memory alloys uder compression. Philos Mag 87(16):2313–2322CrossRef
15.
Zurück zum Zitat Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K (2001) Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co–Ni–Ga and Co–Ni–Al systems. Mater Trans 42(11):2472–2475CrossRef Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K (2001) Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co–Ni–Ga and Co–Ni–Al systems. Mater Trans 42(11):2472–2475CrossRef
16.
Zurück zum Zitat Brown PJ, Ishida K, Kainuma R, Kanomata T, Neumann K-U, Oikawa K (2005) Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co–Ni–Al and Co–Ni–Ga. J Phys: Condens Matter 17(8):1301–1310 Brown PJ, Ishida K, Kainuma R, Kanomata T, Neumann K-U, Oikawa K (2005) Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co–Ni–Al and Co–Ni–Ga. J Phys: Condens Matter 17(8):1301–1310
17.
Zurück zum Zitat Liu J, Zheng H, Xia M, Huang Y, Li J (2005) Martensitic transformation and magnetic properties in Heusler CoNiGa magnetic shape memory alloys. Scripta Mater 52(9):935–938CrossRef Liu J, Zheng H, Xia M, Huang Y, Li J (2005) Martensitic transformation and magnetic properties in Heusler CoNiGa magnetic shape memory alloys. Scripta Mater 52(9):935–938CrossRef
18.
Zurück zum Zitat Liu J, Xia M, Huang Y, Zheng H, Li J (2006) Effect of annealing on the microstructure and martensitic transformation of magnetic shape memory alloys CoNiGa. J Alloys Compd 417(1–2):96–99CrossRef Liu J, Xia M, Huang Y, Zheng H, Li J (2006) Effect of annealing on the microstructure and martensitic transformation of magnetic shape memory alloys CoNiGa. J Alloys Compd 417(1–2):96–99CrossRef
19.
Zurück zum Zitat Yan L, Yan X, Liang C, Yunqing M, Huibin X (2010) Microstructures and shape memory characteristics of dual-phase Co–Ni–Ga high-temperature shape memory alloys. Acta Mater 58:3655–3663CrossRef Yan L, Yan X, Liang C, Yunqing M, Huibin X (2010) Microstructures and shape memory characteristics of dual-phase Co–Ni–Ga high-temperature shape memory alloys. Acta Mater 58:3655–3663CrossRef
20.
Zurück zum Zitat Dogan E, Karaman I, Chumlyakov YI, Luo ZP (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59(3):1168–1183CrossRef Dogan E, Karaman I, Chumlyakov YI, Luo ZP (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59(3):1168–1183CrossRef
21.
Zurück zum Zitat Vollmer M, Krooss P, Segel Ch, Weidner A, Paulsen A, Frenzel J, Schaper M, Eggeler G, Maier HJ, Niendorf T (2015) Damage evolution in pseudoelastic polycristalline Co-Ni-Ga high-temperature shape memory alloys. J Alloys Compd 633:288–295CrossRef Vollmer M, Krooss P, Segel Ch, Weidner A, Paulsen A, Frenzel J, Schaper M, Eggeler G, Maier HJ, Niendorf T (2015) Damage evolution in pseudoelastic polycristalline Co-Ni-Ga high-temperature shape memory alloys. J Alloys Compd 633:288–295CrossRef
22.
Zurück zum Zitat Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y, Araki Y, Ishida K, Kainuma R (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–1502CrossRef Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y, Araki Y, Ishida K, Kainuma R (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–1502CrossRef
23.
Zurück zum Zitat Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269CrossRef Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269CrossRef
24.
Zurück zum Zitat Krooss P, Niendorf T, Lauhoff C, Karsten E, Gerstein G, Liehr A, Maier HJ (2019) Direct microstructure design by hot extrusion - High-temperature shape memory alloys with bamboo-like microstructure corresponding. Scripta Mater 162:127–131CrossRef Krooss P, Niendorf T, Lauhoff C, Karsten E, Gerstein G, Liehr A, Maier HJ (2019) Direct microstructure design by hot extrusion - High-temperature shape memory alloys with bamboo-like microstructure corresponding. Scripta Mater 162:127–131CrossRef
25.
Zurück zum Zitat Maier HJ, Niendorf T, Bürgel R (2015) Handbuch Hochtemperatur-Werkstofftechnik. Springer Fachmedien, WiesbadenCrossRef Maier HJ, Niendorf T, Bürgel R (2015) Handbuch Hochtemperatur-Werkstofftechnik. Springer Fachmedien, WiesbadenCrossRef
26.
Zurück zum Zitat Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Elsevier, Amsterdam Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Elsevier, Amsterdam
27.
Zurück zum Zitat Arroyave R, Junkaew A, Chivukula A, Bajaj S, Yao C-Y, Garay A (2010) Investigation of the structural stability of Co2NiGa shape memory alloys via ab initio methods. Acta Mater 58:5220–5231CrossRef Arroyave R, Junkaew A, Chivukula A, Bajaj S, Yao C-Y, Garay A (2010) Investigation of the structural stability of Co2NiGa shape memory alloys via ab initio methods. Acta Mater 58:5220–5231CrossRef
28.
Zurück zum Zitat Oikawa K, Ota T, Imano Y, Omori T, Kainuma R, Ishida K (2006) Phase equilibria and phase transformation of Co − Ni − Ga ferromagnetic shape memory alloy system. J Phase Equilib Diffus 27(1):75–82CrossRef Oikawa K, Ota T, Imano Y, Omori T, Kainuma R, Ishida K (2006) Phase equilibria and phase transformation of Co − Ni − Ga ferromagnetic shape memory alloy system. J Phase Equilib Diffus 27(1):75–82CrossRef
29.
Zurück zum Zitat Braun C, Dake JM, Krill CE, Birringer R (2018) Abnormal grain growth mediated by fractal boundary migration at the nanoscale. Sci Rep 8(1592):1–6 Braun C, Dake JM, Krill CE, Birringer R (2018) Abnormal grain growth mediated by fractal boundary migration at the nanoscale. Sci Rep 8(1592):1–6
30.
Zurück zum Zitat Li Y, Liu HY, Fan-Bin M, Liu GD, Dai XF, Zhang M, Liu ZH, Chen JL, Wu GH (2004) Magnetic field-controlled two-way shape memory on CoNiGa single crystals. Appl Phys Lett 84(18):3594–3596CrossRef Li Y, Liu HY, Fan-Bin M, Liu GD, Dai XF, Zhang M, Liu ZH, Chen JL, Wu GH (2004) Magnetic field-controlled two-way shape memory on CoNiGa single crystals. Appl Phys Lett 84(18):3594–3596CrossRef
31.
Zurück zum Zitat Dai XF, Wang HY, Liu GD, Wang YG, Duan XF, Chen JL, Wu GH (2006) Effenct of heat treatment on the properties of Co50Ni20Ga30 ferromagnetic shape memory alloy ribbons. J Phys D Appl Phys 39:2886–2889CrossRef Dai XF, Wang HY, Liu GD, Wang YG, Duan XF, Chen JL, Wu GH (2006) Effenct of heat treatment on the properties of Co50Ni20Ga30 ferromagnetic shape memory alloy ribbons. J Phys D Appl Phys 39:2886–2889CrossRef
32.
Zurück zum Zitat Dogan E, Karaman I, Singh N, Chivukula A, Thawabi HS, Arroyave R (2012) The effect of electronic and magnetic valences on the martensitic transformation on CoNiGa shape memory alloys. Acta Mater 60:3535–3558CrossRef Dogan E, Karaman I, Singh N, Chivukula A, Thawabi HS, Arroyave R (2012) The effect of electronic and magnetic valences on the martensitic transformation on CoNiGa shape memory alloys. Acta Mater 60:3535–3558CrossRef
33.
Zurück zum Zitat Lackmann J, Niendorf T, Maxisch M, Grundmeier G, Maier HJ (2011) High-resolution in situ characterization of the surface evolution of a polycrystalline NiTi SMA alloy under pseudoelastic deformation. Mater Charact 62(3):298–303CrossRef Lackmann J, Niendorf T, Maxisch M, Grundmeier G, Maier HJ (2011) High-resolution in situ characterization of the surface evolution of a polycrystalline NiTi SMA alloy under pseudoelastic deformation. Mater Charact 62(3):298–303CrossRef
Metadaten
Titel
Tailoring the Microstructure in Polycrystalline Co–Ni–Ga High-Temperature Shape Memory Alloys by Hot Extrusion
verfasst von
E. Karsten
G. Gerstein
O. Golovko
A. Dalinger
C. Lauhoff
P. Krooss
T. Niendorf
A. Samsonenko
H. J. Maier
Publikationsdatum
18.01.2019
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 1/2019
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-019-00208-7

Weitere Artikel der Ausgabe 1/2019

Shape Memory and Superelasticity 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.