Skip to main content
Log in

DSC Cycling Effects on Phase Transformation Temperatures of Micron and Submicron Grain Ni50.8Ti49.2 Microwires

  • Special Issue: A Tribute to Prof. Dr. Gunther Eggeler, Invited Paper
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

The effect of thermal cycling parameters on the phase transformation temperatures of micron and submicron grain size recrystallized Ni–Ti microwires was investigated. The suppression of martensitic transformation by thermal cycling was found to enhance when combined with room temperature aging between the cycles and enhances even more when aged at elevated temperature of 100 °C. While aging at room temperature alone has no clear effect on the martensitic transformation, elevated temperature aging at 100 °C alone suppresses the martensitic transformation. All aforementioned effects were found to be stronger in large grain samples than in small grain samples. Martensitic transformation suppression in all cases was in line with the formation of Ni4Ti3 precursors in the form of 〈111〉B2 Ni clusters as concluded from the observed diffuse intensity in the electron diffraction patterns revealing short-range ordering enhancement. Performing thermal cycling in some different temperature ranges to separate the effect of martensitic transformation and high temperature range of DSC cycling revealed that both high temperature- and martensitic transformation-included cycles enhance the short-range ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Morgan NB, Friend CM (2001) A review of shape memory stability in NiTi alloys. J Phys IV 11:325–332

    Google Scholar 

  2. Bhattacharya K, Conti S, Zanzotto G, Zimmer J (2004) Crystal symmetry and the reversibility of martensitic transformations. Nature 428(6978):55–59. https://doi.org/10.1038/nature02378

    Article  CAS  Google Scholar 

  3. Miyazaki S, Igo Y, Otsuka K (1986) Effect of thermal cycling on the transformation temperatures of Ti-Ni alloys. Acta Metall 34(10):2045–2051. https://doi.org/10.1016/0001-6160(86)90263-4

    Article  CAS  Google Scholar 

  4. Kustov S, Mas B, Salas D, Cesari E, Raufov S, Nikolaev V, Van Humbeeck J (2015) On the effect of room temperature ageing of Ni-Rich Ni–Ti alloys. Scripta Mater 103:10–13. https://doi.org/10.1016/j.scriptamat.2015.02.025

    Article  CAS  Google Scholar 

  5. Wang FE, DeSavage BF, Buehler WJ, Hosler WR (1968) The irreversible critical range in the TiNi transition. J Appl Phys 39(5):2166–2175. https://doi.org/10.1063/1.1656521

    Article  CAS  Google Scholar 

  6. Sandrock GD, Perkins AJ, Hehemann RF (1971) The premartensitic instability in near-equiatomic TiNi. Metall Trans 2(10):2769–2781. https://doi.org/10.1007/BF02813251

    Article  CAS  Google Scholar 

  7. Wayman CM, Cornelis I, Shimizu K (1972) Transformation behavior and the shape memory in thermally cycled TiNi. Scr Metall 6(2):115–122. https://doi.org/10.1016/0036-9748(72)90261-X

    Article  CAS  Google Scholar 

  8. Matsumoto H (1993) Transformation behaviour of NiTi in relation to thermal cycling and deformation. Phys B 190(2):115–120. https://doi.org/10.1016/0921-4526(93)90454-E

    Article  CAS  Google Scholar 

  9. Matsumoto H (1991) Appearance of an intermediate phase with thermal cycling on the transformation of NiTi. J Mater Sci Lett 10(7):408–410. https://doi.org/10.1007/BF00728048

    Article  CAS  Google Scholar 

  10. Wagner MF-X, Dey SR, Gugel H, Frenzel J, Somsen Ch, Eggeler G (2010) Effect of low-temperature precipitation on the transformation characteristics of Ni-rich NiTi shape memory alloys during thermal cycling. Intermetallics 18(6):1172–1179. https://doi.org/10.1016/j.intermet.2010.02.048

    Article  CAS  Google Scholar 

  11. Wang X, Van Humbeeck J, Verlinden B, Kustov S (2016) Thermal cycling induced room temperature aging effect in Ni-rich NiTi shape memory alloy. Scripta Mater 113:206–208. https://doi.org/10.1016/j.scriptamat.2015.11.007

    Article  CAS  Google Scholar 

  12. Pourbabak S, Wang X, van Dyck D, Verlinden B, Schryvers D (2017) Ni cluster formation in low temperature annealed Ni50.6Ti49.4. Funct Mater Lett 10:1740005. https://doi.org/10.1142/S1793604717400057

    Article  CAS  Google Scholar 

  13. Pourbabak S (2020) Influence of nano- and microstructural features and defects in fine-grained Ni-Ti on the thermal and mechanical reversibility of the martensitic transformation. PhD thesis, chapter 4. University of Antwerp & KU Leuven, Antwerpen. https://anet.be/record/opacuantwerpen/c:lvd:14952868

  14. Pourbabak S (2020) Influence of nano- and microstructural features and defects in fine-grained Ni-Ti on the thermal and mechanical reversibility of the martensitic transformation. PhD thesis, chapter 5. University of Antwerp & KU Leuven, Antwerpen. https://anet.be/record/opacuantwerpen/c:lvd:14952868

  15. Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater 90:213–231. https://doi.org/10.1016/j.actamat.2015.02.029

    Article  CAS  Google Scholar 

  16. Michutta J, Somsen Ch, Yawny A, Dlouhy A, Eggeler G (2006) Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates. Acta Mater 54(13):3525–3542. https://doi.org/10.1016/j.actamat.2006.03.036

    Article  CAS  Google Scholar 

  17. Karbakhsh Ravari B, Farjami S, Nishida M (2014) Effects of Ni concentration and aging conditions on multistage martensitic transformation in aged Ni-rich Ti–Ni alloys. Acta Mater 69:17–29. https://doi.org/10.1016/j.actamat.2014.01.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.P. would like to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Schryvers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special issue of Shape Memory and Superelasticity to honor Prof. Dr.-Ing. Gunther Eggeler. This special issue was organized by Prof. Hüseyin Sehitoglu, University of Illinois at Urbana-Champaign, and Prof. Dr.-Ing. Hans Jürgen Maier, Leibniz Universität Hannover.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourbabak, S., Verlinden, B., Van Humbeeck, J. et al. DSC Cycling Effects on Phase Transformation Temperatures of Micron and Submicron Grain Ni50.8Ti49.2 Microwires. Shap. Mem. Superelasticity 6, 232–241 (2020). https://doi.org/10.1007/s40830-020-00278-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-020-00278-y

Keywords

Navigation