Skip to main content
Log in

Study of the Effect of Spinel Composition on Metallic Copper Losses in Slags

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

In both primary and secondary copper production, copper losses in slags are a decisive factor confining the process efficiency. An important cause for mechanical entrainment of metal droplets in slags is their attachment to solid spinel particles present in the slag phase, hindering sedimentation. To further optimize the production process, it is important to gain insights in the fundamental mechanisms governing this attachment. In the present study, the influence of the spinel composition on the attachment of copper droplets is investigated. First, the attachment is studied in an industrially relevant synthetic PbO–CaO–SiO2–Cu2O–Al2O3–FeO–ZnO slag system. Second, the wetting of copper on two spinel substrates (ZnFe2O4 and MgAl2O4) has been studied in the absence of a slag system, by sessile-drop experiments. Based on the results of both types of experiments, a clear influence of the spinel composition on the sticking behavior of copper droplets is noted. These observations might be transferred to industrial processes to adapt processing parameters to diminish copper losses in industrial slags.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Degel R, Oterdoom H, Kunze J, Warczok A, Riveros G Latest results of the slag cleaning reactor for copper recovery and its potential for the PGM industry. In: Metallurgy TSAIoMa (ed) Proceedings of Conference on Third international platinum conference ‘Platinum in Transformation’, Sun City, South Africa October 2008. The Southern African Institute of Mining and Metallurgy, Paper 7, 197–202

  2. Suh I-K, Waseda Y, Yazawa A (1988) Some interesting aspects of non-ferrous metallurgical slags. High Temp Mater Process 8:65–88

    Article  CAS  Google Scholar 

  3. Liow JL, Juusela M, Gray NB, Sutalo ID (2003) Entrainment of a two-layer liquid through a taphole. Metall Mater Trans B 34:821–832. doi:10.1007/s11663-003-0088-8

    Article  Google Scholar 

  4. Cardona N, Hernandez L, Araneda E, Parra R Evaluation of copper losses in the slag cleaning circuits from two Chilean smelters. In: Proceedings of Conference on Copper 2010, Hamburg, Germany June 2010. GMDB, vol 7, pp 2637–2654

  5. Cardona N, Coursol P, Mackey PJ, Parra R (2011) Physical chemistry of copper smelting slags and copper losses at the Paipote smelter Part 1-Thermodynamic modelling. Can Metall Q 50:318–329. doi:10.1179/000844311x13112418194761

    Article  CAS  Google Scholar 

  6. Imris I (2004) MSaGA Copper losses to slags obtained from the El Teniente process. In: Paper presented at the VII international conference on molten slags fluxes and salts, Johannesburg, South Africa

  7. Sridhar R, Toguri J, Simeonov S (1997) Copper losses and thermodynamic considerations in copper smelting. Metallurg Mater Trans B 28:191–200. doi:10.1007/s11663-997-0084-5

    Article  Google Scholar 

  8. Ip SW, Toguri JM (1992) Entrainment behavior of copper and copper matte in copper smelting operations. Metallurg Mater Trans B 23:303–311. doi:10.1007/bf02656285

    Article  Google Scholar 

  9. Andrews L (2008) Base metal losses to furnace slag during processing of platinum-bearing concentrates. MSc degree thesis, University of Pretoria, Pretoria

    Google Scholar 

  10. Minto R, Davenport WG (1972) Entrapment and flotation of matte in molten slags. Can Min Metallurg Bull 65:C36–C42

    Google Scholar 

  11. Maru HC, Wasan DT, Kintner RC (1971) Behavior of a rigid sphere at a liquid-liquid interface. Chem Eng Sci 26:1615–1628. doi:10.1016/0009-2509(71)86051-7

    Article  CAS  Google Scholar 

  12. Malfliet A, Lotfian S, Scheunis L, Petkov V, Pandelaers L, Jones PT, Blanpain B (2014) Degradation mechanisms and use of refractory linings in copper production processes: a critical review. J Eur Ceram Soc 34:849–876. doi:10.1016/j.jeurceramsoc.2013.10.005

    Article  CAS  Google Scholar 

  13. De Wilde E et al (2015) Wetting behaviour of Cu based alloys on spinel substrates in pyrometallurgical context. Mater Sci Technol 31:1925–1933. doi:10.1179/1743284715Y.0000000052

    Article  Google Scholar 

  14. Kim H, Ozturk B, Fruehan RJ (1998) Slag-metal separation in the blast furnace trough. ISIJ Int 38:430–439. doi:10.2355/isijinternational.38.430

    Article  CAS  Google Scholar 

  15. Savolainen J, Fabritius T, Mattila O (2009) Effect of fluid physical properties on the emulsification. ISIJ Int 49:29–36

    Article  CAS  Google Scholar 

  16. Poggi D, Minto R, Davenpor W (1969) Mechanisms of metal entrapment in slags. J Met 21:40

    CAS  Google Scholar 

  17. Liow JL, Juusela M, Gray NB, Sutalo ID (2003) Entrainment of a two-layer liquid through a taphole. Metallurg Mater Trans B 34:821–832. doi:10.1007/s11663-003-0088-8

    Article  Google Scholar 

  18. Bellemans I, Moelans N, Verbeken K (2015) Phase field modelling of the attachment of metallic droplets to solid particles in liquid slags: Influence of interfacial energies and slag supersaturation. Comput Mater Sci 108:348–357. doi:10.1016/j.commatsci.2015.03.019

    Article  CAS  Google Scholar 

  19. Bellemans I, De Wilde E, Moelans N, Verbeken K (2015) Phase field modelling of the attachment of metallic droplets to solid particles in liquid slags: influence of particle characteristics. Acta Mater 101:172–180. doi:10.1016/j.actamat.2015.08.074

    Article  CAS  Google Scholar 

  20. Bellemans I, De Wilde E, Moelans N, Verbeken K (2016) Phase field simulation study of the attachment of metallic droplets to solid particles in liquid slags based on real slag–spinel micrographs. Comput Mater Sci 118:269–278. doi:10.1016/j.commatsci.2016.03.022

    Article  Google Scholar 

  21. Tan PF (2011) Modeling and control of copper loss in smelting slag. JOM 63(12):51–57. doi:10.1007/s11837-011-0207-y

    Article  CAS  Google Scholar 

  22. Pirker S (2010) Towards efficient modelling of slag entrainment during metallurgical processes. Steel Res Int 81:623–629. doi:10.1002/srin.201000084

    Article  CAS  Google Scholar 

  23. Imris I, Sanchez M, Achurra G (January 2004) Copper losses to slags obtained from the El Teniente process. In: Paper presented at the Proceedings of 7th International Conference on molten slags, fluxes and salts, Johannesburg, South Africa

  24. Imris I (2003) Copper losses in copper smelting slags. In: Kongoli F, Itagaki K, Yamauchi C, Sohn HY (eds) Presented at the yazawa international symposium: metallurgical and materials processing: principles and technologies, Sandiego, California, USA, pp 359–373

  25. Takeda Y (2003) Thermodynamic evaluation of copper loss in slag equilibrated with matte. In: Kongoli F, Itagaki K, Yamauchi C, Sohn HY (eds) Presented at the yazawa international symposium: metallurgical and materials processing: principles and technologies, Sandiego, California, USA, pp 341–357

  26. Genevski K, Stefanova V (2008) Dispersed matte droplets in industrial slag melts from flash smelting furnace. Can Metall Q 47:51–58

    Article  CAS  Google Scholar 

  27. Jalkanen H, Vehvilainen J, Poijarvi J (2003) Copper in solidified copper smelter slags. Scand J Metall 32:65–70. doi:10.1034/j.1600-0692.2003.00536.x

    Article  CAS  Google Scholar 

  28. De Wilde E et al (2015) Origin and sedimentation characteristics of sticking copper droplets to spinel solids in pyrometallurgical slags. Mater Sci Technol. doi:10.1080/02670836.2016.1151998

    Google Scholar 

  29. Lee J, Tanaka T, Asano Y, Hara S (2004) Oxygen adsorption behavior on the surface of liquid Cu-Ag alloys. Mater Trans 45:2719–2722. doi:10.2320/matertrans.45.2719

    Article  CAS  Google Scholar 

  30. De Wilde E, Verbeken K, Campforts M, Vanmeensel K, Vervynckt S (2013) Characterization methodology for copper-droplet losses in slags. In: Copper 2013, Proceedings. Presented at the conference on Copper 2013, pp 749–759

  31. De Wilde E, Bellemans I, Campforts M, Guo M, Blanpain B, Moelans N, Verbeken K (2016) Sessile drop evaluation of high temperature copper/spinel and slag/spinel interactions. Trans Nonferrous Met Soc China 26:2770–2783. doi:10.1016/S1003-6326(16)64344-3

    Article  Google Scholar 

  32. De Wilde E, Bellemans I, Vervynckt S, Campforts M, Vanmeensel K, Moelans N, Verbeken K (2013) Towards a methodology to study the interaction between Cu droplets and spinel particles in slags. In: EMC conference, Weimar 2013, pp 161–174

  33. De Wilde E, Bellemans I, Campforts M, Muxing G, Blanpain B, Moelans N, Verbeken K (2016) Investigation of high temperature slag/copper/spinel interactions. Metall Mater Trans B. doi:10.1007/s11663-016-0805-8

    Google Scholar 

  34. Stalder AF, Melchior T, Muller M, Sage D, Blu T, Unser M (2010) Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf A 364:72–81. doi:10.1016/j.colsurfa.2010.04.040

    Article  CAS  Google Scholar 

  35. De Wilde E et al. Wetting behaviour of spinel with copper to understand metallic copper losses to slags. In: GDMB (ed) European Metallurgical Conference, Düsseldorf, 2015. pp 3–18

Download references

Acknowledgements

The authors wish to thank the Agency for Innovation by Science and Technology in Flanders (IWT, Project 110541) and Umicore for its financial support; and, in particular, they thank Maurits van Camp, Luc Coeck, Saskia Bodvin, Kristel Van Ostaeyen, Eddy Boydens, Danny Leysen, and the technical staff of the Umicore R&D for their support with the experiments and characterization. Pieter L’Hoëst is thanked for the help with the EPMA measurements. Jeroen Heulens and Joris Van Dyck are thanked for the help with the development of the sessile-drop set-up and for the help with the sessile-drop experiments, respectively. Lisa Claeys and Tim De Seranno are thanked for their help with the experimental work during their internship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge Bellemans.

Additional information

The contributing editor for this article was K. Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Wilde, E., Bellemans, I., Campforts, M. et al. Study of the Effect of Spinel Composition on Metallic Copper Losses in Slags. J. Sustain. Metall. 3, 416–427 (2017). https://doi.org/10.1007/s40831-016-0106-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-016-0106-0

Keywords

Navigation