Skip to main content
Log in

Nitrogen-doped black titania for high performance supercapacitors

氮掺杂黑色二氧化钛用于高性能超级电容器

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

For energy storage system, it is still a huge challenge to achieve high energy density and high power density simultaneously. One potential solution is to fabricate electrochemical capacitors (ECs), which store electric energy through surface ion adsorption or redox reactions. Here we report a new electrode material, heavy nitrogen-doped (9.29 at.%) black titania (TiO2−x:N). This unique hybrid material, consisting of conductive amorphous shells supported on nanocrystalline cores, has rapid N-mediated redox reaction (TiO2−xNy + zH+ + ze ↔ TiO2−xNyHz), especially in acidic solutions, providing a specific capacitance of 750 F g−1 at 2 mV s−1 (707 F g−1 at 1 A g−1), great rate capability (503 F g−1 at 20 A g−1), and maintain stable after initial fading. Being a new developed supercapacitor material, nitrogen-doped black titania may revive the oxide-based supercapacitors.

摘要

对于储能系统, 同时实现高能量密度和高功率密度仍是一个 巨大的挑战. 电化学超级电容器通过表面吸附或表面氧化还原反 应实现储能, 是解决上述问题的潜在方法之一. 本论文报道了一种 新型高氮掺杂(9.29 at.%)黑色二氧化钛(TiO2−x:N)超级电容器电极 材料. 该材料具有独特的微观结构, 由高导电的非晶壳层和一个纳 米晶核组成. 在酸性电解液中, 该材料可以通过氮参与的氧化还原 反应(TiO2−xNy + zH+ + ze ↔ TiO2−xNyHz)可逆地与质子结合实现 能量的高效快速储存, 实现极高的比电容(2 mV s−1扫速下容量高 达750 F g−1, 1 A g−1电流密度下容量可达707 F g−1)、高倍率特性 (极高电流密度20 A g−1时容量仍可达503 F g−1)和长时间循环下的 高稳定性. 作为一种新型超级电容器电极材料, 氮掺杂黑色二氧化 钛或将引领金属氧化物型超级电容器的复兴.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller JR, Simon P. Materials science: Electrochemical capacitors for energy management. Science, 2008, 321: 651–652

    Article  CAS  Google Scholar 

  2. Yu G, Xie X, Pan L, et al. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2: 213–234

    Article  CAS  Google Scholar 

  3. Lin T, Chen IW, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015, 350: 1508–1513

    Article  CAS  Google Scholar 

  4. Chiang YM. Building a better battery. Science, 2010, 330: 1485–1486

    Article  CAS  Google Scholar 

  5. Lu X, Yu M, Wang G, et al. H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater, 2013, 25: 267–272

    Article  CAS  Google Scholar 

  6. Fan Z, Yan J, Wei T, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater, 2011, 21: 2366–2375

    Article  CAS  Google Scholar 

  7. Chen PC, Shen G, Shi Y, et al. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metaloxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano, 2010, 4: 4403–4411

    Article  CAS  Google Scholar 

  8. Wang DW, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed, 2008, 47: 373–376

    Article  CAS  Google Scholar 

  9. Ji J, Zhang LL, Ji H, et al. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano, 2013, 7: 6237–6243

    Article  CAS  Google Scholar 

  10. Zhao X, Zhang L, Murali S, et al. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano, 2012, 6: 5404–5412

    Article  CAS  Google Scholar 

  11. Lu Q, Lattanzi MW, Chen Y, et al. Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew Chem Int Ed, 2011, 50: 6847–6850

    Article  CAS  Google Scholar 

  12. Wu ZS, Wang DW, Ren W, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater, 2010, 20: 3595–3602

    Article  CAS  Google Scholar 

  13. Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater, 2013, 12: 518–522

    Article  CAS  Google Scholar 

  14. Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 2006, 313: 1760–1763

    Article  CAS  Google Scholar 

  15. Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometresized supercapacitors based on onion-like carbon. Nat Nanotech, 2010, 5: 651–654

    Article  CAS  Google Scholar 

  16. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7, 845–854

    Article  CAS  Google Scholar 

  17. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  CAS  Google Scholar 

  18. Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395: 583–585

    Article  CAS  Google Scholar 

  19. Wang Z, Yang C, Lin T, et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ Sci, 2013, 6: 3007–3014

    Article  CAS  Google Scholar 

  20. Wang Z, Yang C, Lin T, et al. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater, 2013, 23: 5444–5450

    Article  CAS  Google Scholar 

  21. Brezesinski T, Wang J, Polleux J, et al. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J Am Chem Soc, 2009, 131: 1802–1809

    Article  CAS  Google Scholar 

  22. Xia T, Zhang C, Oyler NA, et al. Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv Mater, 2013, 25: 6905–6910

    Article  CAS  Google Scholar 

  23. Green MA, Xu J, Liu H, et al. Terahertz absorption of hydrogenated TiO2 nanoparticles. Mater Today Phys, 2018, 4: 64–69

    Article  Google Scholar 

  24. Green M, Van Tran AT, Smedley R, et al. Microwave absorption of magnesium/hydrogen-treated titanium dioxide nanoparticles. Nano Mater Sci, 2019, 1: 48–59

    Article  Google Scholar 

  25. Green M, Xiang P, Liu Z, et al. Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles. J Materiomics, 2019, 5: 133–146

    Article  Google Scholar 

  26. Lu X, Wang G, Zhai T, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett, 2012, 12: 1690–1696

    Article  CAS  Google Scholar 

  27. Lin T, Yang C, Wang Z, et al. Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ Sci, 2014, 7: 967–972

    Article  CAS  Google Scholar 

  28. Bi H, Huang F, Liang J, et al. Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. J Mater Chem, 2011, 21: 17366–17370

    Article  CAS  Google Scholar 

  29. Gao Q, Demarconnay L, Raymundo-Piñero E, et al. Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ Sci, 2012, 5: 9611–9617

    Article  CAS  Google Scholar 

  30. Xie Y, Fu D. Photochemical performance and electrochemical capacitance of titania nanocomplexes. Mater Res Bull, 2010, 45: 628–635

    Article  CAS  Google Scholar 

  31. Salari M, Aboutalebi SH, Konstantinov K, et al. A highly ordered titania nanotube array as a supercapacitor electrode. Phys Chem Chem Phys, 2011, 13: 5038–5041

    Article  CAS  Google Scholar 

  32. Salari M, Konstantinov K, Liu HK. Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. J Mater Chem, 2011, 21: 5128–5133

    Article  CAS  Google Scholar 

  33. Zhou H, Zhang Y. Electrochemically self-doped TiO2 nanotube arrays for supercapacitors. J Phys Chem C, 2014, 118: 5626–5636

    Article  CAS  Google Scholar 

  34. Ozkan S, Nguyen NT, Hwang I, et al. Highly conducting spaced TiO2 nanotubes enable defined conformal coating with nanocrystalline Nb2O5 and high performance supercapacitor applications. Small, 2017, 13: 1603821

    Article  Google Scholar 

  35. Heng I, Lai CW, Juan JC, et al. Low-temperature synthesis of TiO2 nanocrystals for high performance electrochemical supercapacitors. Ceramics Int, 2019, 45: 4990–5000

    Article  CAS  Google Scholar 

  36. Qorbani M, Khajehdehi O, Sabbah A, et al. Ti-rich TiO2 tubular nanolettuces by electrochemical anodization for all-solid-state high-rate supercapacitor devices. ChemSusChem, 2019, 12: 4064–4073

    Article  CAS  Google Scholar 

  37. Wang Q, Li M, Wang Z. Supercapacitive performance of TiO2 boosted by a unique porous TiO2/Ti network and activated Ti3+. RSC Adv, 2019, 9: 7811–7817

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National key R&D Program of China (2016YFB0901600), and the Key Research Program of Chinese Academy of Sciences (QYZDJ-SSWJSC013). Chen IW was supported by U.S. Department of Energy BES grant DE-FG02-11ER46814 and used the facilities (Laboratory for Research on the Structure of Matter) supported by NSF grant DMR-11-20901.

Author information

Authors and Affiliations

Authors

Contributions

Yang C, Huang F, and Chen IW designed the experiment; Yang C, Wang X, Xu J, and Wang Z engineered the samples and the tests; Gu H performed the SEM and TEM tests. Yang C, Wang X, and Dong W analyzed the data. Yang C and Dong W wrote the paper with support from Huang F. All authors contributed to the general discussion.

Corresponding author

Correspondence to Fuqiang Huang  (黄富强).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Chongyin Yang obtained his PhD under the supervision of Prof. Fuqiang Huang at Shanghai Institute of Ceramics of the Chinese Academy of Sciences (SICCAS). He is now an assistant research scientist at the Department of Chemistry and Biochemistry, University of Maryland. His research interests include the design, synthesis and application of supercapacitors and lithiumion batteries.

Fuqiang Huang obtained his PhD in science from Beijing Normal University in 1996. Then he joined the State Key Lab of High Performance Ceramics & Superfine Microstructure at SICCAS, and became a full professor in 2003. His research interests focus on the new energy materials and devices. He put forward the concept of multiple physical quantities synergy in structure function region for energy conversion materials and the theoretical model of accumulation factor.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Wang, X., Dong, W. et al. Nitrogen-doped black titania for high performance supercapacitors. Sci. China Mater. 63, 1227–1234 (2020). https://doi.org/10.1007/s40843-020-1303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1303-4

Keywords

Navigation