Skip to main content
Log in

Eye Movement Artefact Suppression Using Volterra Filter for Electroencephalography Signals

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Ocular artefacts are the most important form of interference in electroencephalography (EEG) signals. These eye movements have high amplitude and a frequency band that overlaps that of physiological or brain signals. It is important to remove these ocular artefacts before analyzing EEG signals to obtain accurate information about brain activity and avoid mistakes in its interpretation. This study presents an ocular artefact removal method based on a Volterra filter (VF) with a multichannel structure. Based on applications with various real and synthetic signals, the accuracy of the VF is compared with those of existing methods based on principal component analysis, support vector machines, and independent component analysis. The VF method has lower values of normalized mean square error, correlation coefficient, and spectral content change, and higher eye reduction, providing a good trade-off between removing artefacts and preserving inherent brain activities. The VF method can thus serve as an effective framework for substantially removing eye interference in EEG recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sörnmo, L., & Laguna, P. (2005). Bioelectrical signal processing in cardiac and neurological applications. Burlington: Elsevier Academic Press.

    Google Scholar 

  2. Bronzino, J. (2000). The biomedical engineering handbook (2nd ed.). Springer: CRC Press.

    Google Scholar 

  3. Lagerlund, T. D., Sharbrough, F. W., & Busacker, N. E. (1997). Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition. Clinical Neurophysiology, 14, 73–82.

    Article  Google Scholar 

  4. Fatourechi, M., Bashashati, A., Ward, R. K., & Birch, G. E. (2007). Emg and eog artifacts in brain computer interface systems: A survey. Clinical Neurophysiology, 118, 480–494.

    Article  Google Scholar 

  5. Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2000). Removal of eye activity artifacts from visual event-related potentials in normal and clinical subject. Clinical Neurophysiology, 111, 1745–1758.

    Article  Google Scholar 

  6. Li, Y., Ma, Z., Lu, W., & Li, Y. (2006). Automatic removal of the eye blink artifact from eeg using an ica-based template matching approach. Physiological Measurement, 27, 425–436.

    Article  Google Scholar 

  7. Flexer, A., Bauer, H., Pripfl, J., & Dorffner, G. (2005). Using ICA for removal of ocular artifacts in EEG recorded from blind subjects. Neural Networks, 18, 998–1005.

    Article  Google Scholar 

  8. Joyce, C. A., Gorodnitsky, I. F., & Kutas, M. (2004). Automatic removal of eye movement and blink artifacts from eeg data using blind component separation. Psychophysiology, 41, 313–325.

    Article  Google Scholar 

  9. Halder, S., Bensch, M., Mellinger, J., Bogdan, M., Kbler, A., Birbaumer, N., & Rosenstiel, W. (2007). Online artifact removal for brain-computer interfaces using support vector machines and blind source separation. Computational Intelligence and Neuroscience, 1155–1165, 2007.

    Google Scholar 

  10. Peng, H., Hu, B., Shi, Q., Ratcliffe, M., Zhao, Q., Qi, Y., & Gao, G. (2013). Removal of ocular artifacts in EEG–an improved approach combining DWT and ANC for portable applications. IEEE Journal of Biomedical and Health Informatics, 17, 600–607.

    Article  Google Scholar 

  11. Fitzgibbon, S. P., Powersand, D. M. W., Pope, K. J., & Clark, C. R. (2007). Removal of eeg noise and artifact using blind source separation. Journal of Clinical Neurophysiology, 24, 232–243.

    Article  Google Scholar 

  12. Shoker, L., Sanei, S., & Chambers, J. (2005). Artifact removal from electroencephalograms using a hybrid bss-svm algorithm. IEEE Signal Processing Letters, 12, 721–724.

    Article  Google Scholar 

  13. Shao, S. Y., Shen, K. Q., Jin Ong, C., Wilder-Smith, E. P. V., & Li, X. P. (2009). Automatic eeg artifact removal: A weighted support vector machine approach with error correction. IEEE Transactions on Biomedical Engineering, 56, 336–344.

    Article  Google Scholar 

  14. Gao, J. F., Yang, Y., Lin, P., Wang, P., & Zheng, C. X. (2010). Automatic removal of eye-movement and blink artifacts from eeg signals. Brain Topography, 23, 105–114.

    Article  Google Scholar 

  15. Croft, R. J., & Barry, R. J. (2000). Eog correction: Which regression should we use? Psychophysiology, 37, 123–125.

    Article  Google Scholar 

  16. Croft, R. J., & Barry, R. J. (2000). Removal of ocular artifact from the eeg: A review. Clinical Neurophysiology, 30, 5–19.

    Article  Google Scholar 

  17. He, P., Wilson, G., & Russell, C. (2004). Removal of ocular artifacts from electroencephalogram by adaptive filtering. Journal of Medical & Biological Engineering & Computing, 42, 407–412.

    Article  Google Scholar 

  18. Kierkels, J. J., Riani, J., Bergmans, J. W., & van Boxtel, G. J. (2007). Using an eye tracker for accurate eye movement artifact correction. IEEE Transactions on Biomedical Engineering, 54, 1256–1267.

    Article  Google Scholar 

  19. Chan, H. L., Tsai, Y. T., Meng, L. F., & Wu, T. (2010). The removal of ocular artifacts from eeg signals using adaptive filters based on ocular source components. Annals of Biomedical Engineering, 38, 3489–3499.

    Article  Google Scholar 

  20. He, P., Wilson, G., Russell, C., & Gerschutz, M. (2007). Removal of ocular artifacts from the eeg: a comparison between time-domain regression and adaptive filtering method using simulated data. Journal of Medical & Biological Engineering & Computing, 45, 495–503.

    Article  Google Scholar 

  21. Tiejun, L., & Dezhong, Y. (2006). Removal of the ocular artifacts from EEG data using a cascaded spatio-temporal processing. Computer Methods and Programs in Biomedicine, 83, 95–103.

    Article  Google Scholar 

  22. Nadakuditi, R. R., & Silverstein, J. W. (2010). Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples. IEEE Journal of Selected Topics in Signal Processing, 4, 468–480.

    Article  Google Scholar 

  23. Sameni, R., & Cédric, G. P. (2014). An iterative subspace denoising algorithm for removing electroencephalogram ocular artifacts. Journal of Neuroscience Methods, 225, 97–105.

    Article  Google Scholar 

  24. Romero, S., Mañanas, M. A., & Barbanoj, M. J. (2008). A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case. Computers in Biology and Medicine, 38, 348–360.

    Article  Google Scholar 

  25. Sicuranza, G. (1992). Quadratic filters for signal processing. Proceedings of the IEEE, 80, 1263–1285.

    Article  Google Scholar 

  26. Mathews, V. J., & Sicuranza, G. L. (2000). Polynomial Signal Processing. New York: Wiley.

    Google Scholar 

  27. Ortiz, E. L., Tobias, O. J., & Seara, R. (2010). A sparse-interpolated scheme for implementing adaptive volterra filters. IEEE Transactions on Signal Processing, 58, 2022–2035.

    Article  MathSciNet  Google Scholar 

  28. Zhao, H., & Zhang, J. (2009). A novel adaptive nonlinear filter-based pipelined feedforward second-order volterra architecture. IEEE Transactions on Signal Processing, 57, 237–246.

    Article  MathSciNet  Google Scholar 

  29. Burton, T. G., Goubran, R. A., & Beaucoup, F. (2009). Nonlinear system identification using a subband adaptive volterra filter. IEEE Transactions on Instrumentation and Measurement, 58, 1389–1397.

    Article  Google Scholar 

  30. Dezhong, Y. (2001). A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiological Measurement, 22, 693–711.

    Article  Google Scholar 

  31. Raz, G. V., & Veen, B. V. (1998). Baseband volterra filters for implementing carrier based nonlinearities. IEEE Transactions on Signal Processing, 46, 103–114.

    Article  Google Scholar 

  32. Haykin, S. (2001). Adaptive filter theory (4th ed.). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  33. Hsiao-Lung, C., Yu-Tai, T., Ling-Fu, M., & Tony, W. (2010). The removal of ocular artifacts from eeg signals using adaptive filters based on ocular source components. Annals of Biomedical Engineering, 38, 3489–3499.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by University of Castilla-La Mancha, project PI10/01215 from Instituto de Salud Carlos III, and Virgen de la Luz Hospital of Cuenca, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mateo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateo, J., Torres, A.M., Sanchez-Morla, E.M. et al. Eye Movement Artefact Suppression Using Volterra Filter for Electroencephalography Signals. J. Med. Biol. Eng. 35, 395–405 (2015). https://doi.org/10.1007/s40846-015-0036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-015-0036-5

Keywords

Navigation